CPU24 Microprocessor User's Manual

Version 5 Actel for Stereo HET

8/2001 Text Modified for GAFC CPU24 RGB

 Changed slot numbering

9/2001 Added second UART (transmit only)

 Baud rates fixed at 57600

 Added boot ROM, boot via uart, see boot.c for protocol

 Added wait state for memory writes to increase address and data hold time

 g!3 writes to test board LED’s

 Both stacks are 17 deep

10/2001 Carry bit documentation corrected

 Return stack now 33 deep

 Parameter stack wraps around, like MISC6

6/2002 Second UART, TX only

 PHA ASIC Interface

 Sync signal interface

 Livetime Counter

4/2003 Update for Actel Version 3, EM Board

5/2003 Add Stop Processor Clock control bit to g!0

 Expand to 11 interrupts

 Add timer

6/2003 Correct typo, correct timer period

8/2003 Update for Actel version 4

 Update clock frequency and timer and test pulser periods

 Add no_data_flag, bit 8 to g@9

 Remove coincidence mode bits from g!4

 Remove iclk, idata from g!4

 Add g!9, coincidence and trigger mode bits, add rej_all

 Add g!10, et and hazard timer bits

 Add general purpose registers, x and y, at g addresses 14 and 15

10/2003 Update for Version 5 Actel

 Test pulser period units, correct live time units

Chapter 1.
INTRODUCTION

1.1
General Information

CPU24 is a “Minimal Instruction Set Computer” design patterned after Mr. Chuck Moore's MuP21. CPU24 has a 24-bit CPU core with dual stack architecture intended to efficiently execute Forth-like instructions. The processor design is simple to allow implementation within field programmable gate arrays.

CPU24 employs a RISC-like instruction set with four 6-bit instructions packed into 24 bit words. The most significant bit of each instruction designates an I/O Bus operation when set. For I/O Bus instructions (the I/O bus will be referred to as the G bus) the second most significant bit specifies a write when set, read when cleared, while the remaining four bits specify the G bus address. For non-G bus instructions the most significant bit is cleared and the remaining 5 bits specify 32 possible instructions.

Following is a list of CPU24 features:

*
24-bit address and data buses

*
6-bit RISC-like CPU instructions

*
4-deep instruction cache

*
17-deep data stack

*
33-deep return stack

*
Version 5 uses 71% of 54SX72A C-cells and 90% of the R-cells

*
Instruction rate is 6.4 million instructions per second

1.2 Architecture of CPU24 CPU

CPU24 has the following registers:

A
Address Register, supplying address for memory read and write

I
Instruction Register, holding instructions to be executed

P
Program Counter, pointing to the next program word in memory

R
Top of Return Stack

S
Top of Data stack

T
Accumulator for ALU

All registers are 24 bit wide.

The ACTEL implementation provides for a dedicated carry flip-flop that is modified by the add and shl instructions only.

CPU24 has two stacks:

S_stack
Data stack, 17 levels deep (including T)

R_stack
Return stack, 33 levels deep (including R)

The return stack is used to preserve return addresses on subroutine calls. The data stack is used to pass parameters among the nested subroutine calls.

The following diagram shows the architecture of the CPU24 processor. It shows the registers, the stacks, and the data paths among them.

Not shown in the diagram is the connection between T register and the external data bus. When reading data from memory, the A register supplies the memory address to the address bus, and data is latch from the data bus into the T register. When writing data into memory, the address is supplied by A register, and data is written to the data bus from the T register.

Figure 1.
The architecture of CPU24

Data Bus
 Address Bus

 |

 ^

 ^

 |

 |

 |

 v

 |

 |

| I |
| P |
| A |

 ^

 ^

 |

 |

 v

 v

|-----------------------|-----|
|-----|
|-----|-----------------|

| Return Stack

| R |<--->| T |<--->| S
| Data Stack
|

|-----------------------|-----|
|-----|
|-----|-----------------|

 ^ |
 |

 | v
 v

 | |---------|

 | | ALU |

 | |---------|

 |<------|

Chapter 2.
Device Characteristics

2.1
Version 5 Input and Output Signals

Input Signals:

tclk_in 32 MHz master clock

pclk_in 6.4 MHz instruction clock

eclk_in 6.4 MHz clock for event controller

het_reset_n active low reset command

pwrup_reset power up reset

het_cmd_in Command UART input

het_frame_sync_n The one second/minute sync signal

serboot Mode input, high for serial boot, low for EEPROM boot

compout ADC Comparator

spare_in Spare inputs (3)

lop_or_a, lop_or_b Signals from PHA ASIC

rndn_or_a, rndn_gor_0_a,

rndn_gor_1_a, rndn_gor_2_a

rndn_or_b, rndn_gor_0_b,

rndn_gor_1_b, rndn_gor_2_b

pha_data 24-bit data bus from PHA ASIC

Output Signals:

pclk_out wire to pclk_in

eclk_out wire to eclk_in

reset_out

het_cmd_out Status UART output

het_data_out Data UART output

ram_en_n

mem_r_w_n

ram_addr 17-bit memory address

test_out 8-bit test port

high_rate Test Output

debug_out Test Output, event state machine or stack over/underflow

g5_out_14 Spare Output

g5_out_15 “

g5_out_16 “

sdata_n, sclk_n, sload_n, hk_dac[7:0] DAC control signals

token_in PHA ASIC Control Signals

read_reset, adc_read_sel, cmd_data_in, cmd_clk_in, cmd_reset_n

ctr_reset, pha_reset, clg, test_pulse, cmd_strobe, read_clk_in, pha_clk

Tri State Input/Output:

ram_data 24-bit memory data bus

2.2
Timing

All time periods noted in the following timing diagrams are in periods of the master clock.

Figure 3.
Timing of CPU24 instruction executions

Master Clock

|---
|
|----
|
|----
|
|----
|
|----
|
|----
|
|----

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|----
|
|----
|
|----
|
|----
|
|----
|
|---- |

Slot0 Signal

|-----------|

|-----------|

| slot0
| slot1
| slot2
| slot3
| slot4
| slot0
|

|

|---|

|----

 fetch Instr execute
 execute
 execute
 execute
 fetch instr

call, jump, jz, jnc

|-----------|

|-----------|

| slot0
| slot1
| slot0
|

|

|-----------| |--

 fetch Instr execute
 execute
 execute
 execute
 execute ...

NOP and RET instructions can be in any of the four slots. When these two instructions are executed, slot0 will be forced into the next slot, and the next instruction words will be fetched and then executed.

The CPU24 implementation contains a prioritized interrupt controller. If an interrupt is pending an extra slot, slot5, is added to the sequence following slot4. During slot5 the program counter is pushed to return stack and the interrupt vector is placed in the program counter. Currently 11 interrupt lines, labeled int0 – int10 are implemented. Int0 vectors to address 1, int1 to address 2, etc. The highest priority int0 is currently assigned to the UART receive function, while the next highest priority int1, int2 are assigned to the UART transmit functions. Once an interrupt is serviced via execution of slot5, servicing of interrupts is automatically disabled until the execution of an RTI instruction. Immediately after the RTI execution, the highest priority pending interrupt (if any) will be serviced.

Chapter 3.
CPU24 Instruction Set

The CPU24 instruction set can be best explained using the register and data flow diagram as shown in Figures 1 and 2. The T register is the center of the ALU, which takes data from the T and S registers and routes the results back to the T register. The contents of T can be moved to the A register, pushed on the data stack S, and pushed on the return stack S.

The T register connects the data stack and the return stack as a large shift register. Data can be shifted towards the return stack by the PUSH instruction, and shifted towards the data stack by the POP instruction.

The top of the data stack wraps around to the bottom of the data stack for all data stack pop operations.

Register A holds a memory address, which is used to read data from memory into the T register, or write the data in T register to external memory. The address in A can be auto incremented, so that CPU24 can conveniently access data arrays in memory.

P is the program counter and it holds the address of the next instruction to be fetched from the memory. After an instruction is fetched, P is auto incremented and ready to read the next instruction. When a CALL instruction is executed, the address in P is pushed on the return stack. When a return (RET) instructions is executed, the previously saved address in R is popped back into P. The execution sequence interrupted by CALL can now be resumed.

CPU24 is a microprocessor with 24-bit instructions. Each instruction contains up to 4 6-bit machine codes. The instruction fields in a program word can be shown as follows:

Bits:
23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

 | Instruction 1 | Instruction 2 | Instruction 3 | Instruction 4 |

There are 64 possible instructions in a 6-bit field. Half of these are used for G-Bus access, and are specified by a one in the most significant bit of the six-bit field. For G-Bus access instructions the next most significant bit specifies write if set, read if cleared, while the remaining 4 bits are the G-Bus address. The G-Bus is intended to provide fast access to on-chip application specific functions such a timers, i/o registers, UART, general purpose registers, etc. The non-G-Bus instructions are of four classes:

0
Transfer Instructions

1
Memory Access Instructions

2
ALU Instructions

3
Register Instructions

JUMP, CALL, JZ and JNC instructions must appear in Slot1 of a program word, ie. bits 23-18. The last 18 bits 17-0 contain the address inside the current 256K word page. They can access code within the current page. To reach other pages of memory, you will have to push a 24-bit address on the return stack and execute the RET instruction.

The transfer instructions thus has the following forms:

JUMP
aaaaaa aaaaaa aaaaaa CALL
aaaaaa aaaaaa aaaaaa

JZ
aaaaaa aaaaaa aaaaaa JNC
aaaaaa aaaaaa aaaaaa

The conditional jump instruction JZ pops the number being tested in T. The conditional jump instruction JNC causes a jump if the carry flip flop is cleared. It is useful in multiple precision math operations. JNC does not pop the T register, so its contents can be tested again.

Table 1. CPU24 Machine Code

Code
Name

Function

Transfer Instructions

00
JUMP

Jump to 18 bit address. Must in Slot1.

01
RET

Subroutine return.

02
JZ

Jump if T is 0. Must in Slot1.

03
JNC

Jump if carry is reset. Must in Slot1.

04
CALL

Call subroutine. Must in Slot1.

05
NEXT

Jump if R is not 0. Post-decrement R.

Pops R if R is 0. Must be in Slot1.

06
TIMES

Repeat instruction word if R is not 0. Post-decrement R.

Pops R if R is 0.

07
RTI

Return from interrupt

Memory Access Instructions

09
LDP

Push memory at A to T. Increment A.

0A
LDI

Push in-line literal to T.

0B
LD

Push memory at A to T.

0D
STP

Pop T to memory at A. Increment A.

0F
ST

Pop T to memory at A.

ALU Instructions

08
RR8

Rotate right T by 8 bits.

0C
NIP

Pop S, (Equivalent to SWAP DROP)

0E
OR

Pop S and OR it to T.

10
COM

Complement all bits in T.

11
SHL

Shift T left 1 bit.

12
SHR

Shift T right 1 bit.

13
MUL

Multiplication step.

14
XOR

Pop S and Exclusive OR it to T.

15
AND

Pop S and AND it to T.

16
DIV

Division step.

17
ADD

Pop S and add it to T.

Register Instructions

18
POP

Pop R to push T.

19
LDA

Push A to T.

1A
DUP

Duplicate T.

1B
OVER

S to T, push original T.

1C
PUSH

Pop T to push R.

1D
STA

Pop T to A.

1E
NOP

Do nothing.

1F
DROP

Pop T.

I/O Instructions

2n
G@n

Input to push T

3n
G!n

Output to pop T

CPU24 Instructions

JUMP

Code:

00

Usage:

00000 aaaaaa aaaaaa aaaaaa

Stack Effects:

none

Carry:

no change

Function:

Jump to the 18 bit address in the bit field 17-0 in the current 256K word page of memory. It must be in slot 1 of a word.

Restriction:

This instruction allows the program to be redirected to any location within an 256K word page of memory. It does not cross page boundaries. To jump to locations outside of a memory page, one has to push the target address on the return stack and execute the RET instruction to effect a long jump. This restriction also applies to CALL, JZ and JNC. See also RET.

JZ
Code:

02

Usage:

000010 aaaaaa aaaaaa aaaaaa

Stack Effects:

(n --)

Carry:

no change

Function:

Conditionally jump to the 18 bit address in the bit field 17-0 in the current 256K word page of memory, if the T register contains a 0. It must be in slot 1 of a word.

The T register is destroyed and the data stack is popped back to T. This instruction is different from JNC, which does not pop the data stack and removes T.

JNC
Code:

03

Usage:

000011 aaaaaa aaaaaa aaaaaa

Stack Effects:

(n -- n)

Carry:

no change

Function:

Conditionally jump to the 18 bit address in the bit field 17-0 in the current 256K word page of memory, if the Carry Flip Flop is reset. It must be in slot 1 of a word.

The T register and the data stack are preserved. This instruction is different from the instructions JZ, which pop the data stack and removes T.

NEXT

Code:

05

Usage:

000101 aaaaaa aaaaaa aaaaaa

Stack Effects:

(--)

Carry:

no change

Function:

If R is non-zero jump to the 18 bit address in the bit field 17-0 in the current 256K word page of memory and post-decrement R. If R is zero, pop R. It must be in slot 1 of a word.

TIMES

Code:

06

Usage: any slot

Stack Effects:

(--)

Carry:

no change

Function:

If R is non-zero jump back to the beginning of the current instruction word and post-decrement R. If R is zero, pop R.

CALL

Code:

04

Usage:

000100 aaaaaa aaaaaa aaaaaa

Stack Effects:

(-- ; R: -- a)

Carry:

no change

Function:

Call a subroutine whose address is in the bit field 17-0 in the current 256K word page of memory. It must be in slot 1 of a word

The address of the next word is pushed on the return stack. When a return instruction in the subroutine is encountered, this address is popped off the return stack and the next word is executed to resume the interrupted execution sequence.

RET
Code:

01

Usage:

any slot

Stack Effects:

(-- ; R: a --)

Carry:

no change

Function:

Pop the address of the top of the return stack into the program counter P, thus resume the execution sequence interrupted by the last CALL instruction. Besides terminating a subroutine, this instruction may be used to effect a long jump to a location outside of the current memory page.

This instruction can be placed in any slot of a word. The instructions before return are executed. The instructions following return are ignored.

LDI

Code:

0A

Usage:

any slot

nnnnnn nnnnnn nnnnnn nnnnnn

Stack Effects:

(-- n)

Carry:

no change

Function:

Fetch the contents of the next word and push that number onto the data stack. The program counter PC is incremented passing the next word. This instruction allows a program to enter numbers onto the data stack for later use.

LD

Code:

0B

Usage: any slot

Stack Effects:

(-- n)

Carry:

no change

Function:

Fetch the contents of a memory location whose 24-bit address is in the A register and push that number onto the data stack. The address in the A register is not modified.

LDP

Code:

09

Usage: any slot

Stack Effects:

(-- n)

Carry:

no change

Function:

Fetch the contents of a memory location whose 24-bit address is in the A register and push that number onto the data stack. The address in the A register is then incremented to facilitate accessing the next memory. It is most useful in reading values from a table in the memory.

LDA

Code:

19

Usage: any slot

Stack Effects:

(-- a)

Carry:

no change

Function:

Copy the contents in the A register to the T register. The original content of the T register is pushed on the data stack. With LDA and STA, the A register can serve as a scratch pad register to save and restore the contents of the T register.

ST

Code:

0F

Usage: any slot

Stack Effects:

(n --)

Carry:

no change

Function:

Pop the number off the data stack and store it into the memory location whose 24-bit address is in Register A. The address in the A register is not modified.

STP

Code:

0D

Usage: any slot

Stack Effects:

(n --)

Carry:

no change

Function:

Pop the number off the data stack and store it into the memory location whose 24-bit address is in Register A. The address in the A register is then incremented to facilitate the next memory access. It is most useful in storing values to a table in the memory.

STA

Code:

1D

Usage: any slot

Stack Effects:

(a --)

Carry:

no change

Function:

Pop S on the data stack and store it to the T register. The original contents in the T register is copied into the A register. This instruction initializes the A register so that it can be used to fetch data from memory or store data into memory.

NOP

Code:

1E

Usage: any slot

Stack Effects:

(--)

Carry:

no change

Function:

No operation. This instruction will force the execute state to slot 0, to get the next word to be fetched and executed.

PUSH

Code:

1C

Usage: any slot

Stack Effects:

(n -- ; R: -- n)

Carry:

no change

Function:

Pop S on the data stack and store it to the T register. The original contents in the T register is pushed onto the return stack.

POP

Code:

18

Usage: any slot

Stack Effects:

(-- n ; R: n --)

Carry:

no change

Function:

Pop the R register on the return stack to the T register. Original contents in T are pushed on the data stack.

Coding Example:

Exchanging A and T
lda push sta pop

Exchanging A and R
lda pop sta push

DUP

Code:

1A

Usage: any slot

Stack Effects:

(n -- n n)

Carry:

no change

Function:

Duplicate T register and push it on the data stack.

OVER

Code:

1B

Usage: any slot

Stack Effects:

(n1 n2 –- n1 n2 n1)

Carry:

no change

Function:

S is transferred into T register. The original contents in the T register is pushed onto the data stack.

DROP

Code:

1F

Usage: any slot

Stack Effects:

(n --)

Carry:

 no change

Function:

Pop S on the data stack and store it to the T register. The original contents in the T register are lost.

NIP

Code:

0C

Usage: any slot

Stack Effects:

(n1 n2 -- n2)

Carry:

no change

Function:

Pop S, leaving T unchanged.

RR8

Code:

08

Usage: any slot

Stack Effects:

(n1 -- n2)

Carry:

no change

Function:

All 24 bits in the T register are rotated right by 8 bits. The least significant byte of T moves to the position of the most significant byte.

Useful for fast accessing of byte data and data formatting/packing.

COM

Code:

10

Usage: any slot

Stack Effects:

(n1 – n1*)

Carry:

no change

Function:

Complement all 24 bits in the T register. This is a one's complement operation.

SHL

Code:

11

Usage: any slot

Stack Effects:

(n -- 2n)

Carry:

Bit 23 of T is shifted into carry

Function:

Shift all lower 24 bits in the T register to the left by 1 bit. The bit 0 (least significant) is cleared. Carry gets bit 23.

SHR

Code:

12

Usage: any slot

Stack Effects:

(n -- n/2)

Carry:

no change

Function:

Shift the contents of the T register right by one bit. The sign (bit 23) is preserved.

OR

Code:

0E

Usage: any slot

Stack Effects:

(n1 n2 -- n3)

Carry:

no change

Function:

Pop S on the data stack and OR it with the T register. All 24 bits in T are affected.

AND

Code:

15

Usage: any slot

Stack Effects:

(n1 n2 -- n3)

Carry:

no change

Function:

Pop S on the data stack and AND it to the T register. All 24 bits in T are affected.

ADD

Code:

17

Usage: any slot

Stack Effects:

(n1 n2 -- n1+n2)

Carry:

change according to n1 plus n2

Function:

Pop S on the data stack and add it to the T register. Add is unsigned.

MUL

Code:

13

Usage: any slot

Stack Effects:

(n1 n2 -- n1 n3)

Carry:

no change

Function:

Conditionally add the S register on the data stack to the T register if bit 0 in A is set. If bit 0 in A is reset, T register is not modified. The T-A register pair is now shifted to the right by one bit.

This MUL instruction is useful as a multiplication step in implementing a fast software multiplication routine. Repeating this instruction 24 times will multiply A and S and produce a 48-bit product in the T-A pair. (T is normally initialized to zero prior to the multiply sequence. However any non-zero initial value in T adds to the final result in the T-A pair.)

Coding Example:

Multiply two 24-bit unsigned integers. Multiplicand is in S. Multiplier is in A.

mul mul mul mul

mul mul mul mul

mul mul mul mul

mul mul mul mul

mul mul mul mul

mul mul mul mul

The 48-bit product is in T-A register pair and the multiplicand in S is preserved.

DIV

Code:

16

Usage: any slot

Stack Effects:

(n1 n2 -- n1 n3)

Carry:

no change

Function:

Add the S register on the data stack to the T register. If the addition produces a carry place the sum in T, otherwise leave T unchanged. The T-A register pair is now shifted to the left by one bit. Carry is shifted into A(0).

This DIV instruction is useful as a division step in implementing a fast software division routine. Repeating this instruction 25 times (and then performing a shr) will divide a 48 bit number (positive, msb must be zero) originally in the T-A register pair by the negative of the number in S, leaving the result in A and remainder in T.

Coding Example:

Divide a 48-bit positive integer by a positive divisor. The negated divisor is in S.

div div div div

div div div div

div div div div

div div div div

div div div div

div div div div

div shr

XOR

Code:

14

Usage: any slot

Stack Effects:

(n1 n2 -- n3)

Carry:

no change

Function:

Pop S on the data stack and exclusive-OR it to the T register. All 24 bits in T are affected.

RTI

Code:

07

Usage: any slot

Stack Effects:

(-- ; R: a --)

Carry:

no change

Function:

Pop the address of the top of the return stack into the program counter P, to resume execution at completion of an interrupt service routine. Re-enables slot5 interrupt servicing.

This instruction can be placed in any slot of a word. The instructions before RTI are executed. The instructions following return are ignored.

G@n

Code:

2n, where n is 4bit G-Bus address

Usage: any slot

Stack Effects:

(-- n1)

Carry:

no change

Function:

Read G-bus address n and store in T, push original contents of T to data stack.

G!n

Code:

3n, where n is 4bit G-Bus address

Usage: any slot

Stack Effects:

(n1 --)

Carry:

no change

Function:

Pop S from data stack into T. Original contents of T are written to G-bus address n.

G-Bus Assignments:

g@0 read Interrupt Control and Status Register

g@1 read UART Receiver Data

g@2 read zero

g@3 read one

 g@4 read PHA ASIC Data

g@5 read Live Time Counter

g@8 read Coincidence Signals

 g@9 read stack over/underflow, Spare, and Compout bits

 g@10 read Trigger Counter

 g@14 read general register x

 g@15 read general register y

g!0 write Interrupt Control and Status Register

g!1 write UART Transmit Data

g!2 write second UART Transmit Data

g!3 write to Test Port (lower 8 bits)

g!4 write to PHA ASIC Control Signals

g!5 write 3 Spare Output bits, 14-bit Test Pulser Period, units of 80 usec

g!6 write Interrupt Reset and Control bits

 g!7 write DAC control signals

g!8 write timer period - 1, units of 0.64 msec, 8 bits,

 g!9 write trigger, coincidence mode bits

 g!10 write et and hazard timer bits

 g!14 write general register x

 g!15 write general register y

Interrupt Control and Status Register bits (g@0, g!0):

Bit0(lsb)
r/w
global interrupt enable (1 to enable)

Bit1

r/w
enable for interrupt 0 (highest priority)

Bit2

r/w
enable for interrupt 1

Bit3

r/w
enable for interrupt 2

Bit4

r/w
enable for interrupt 3

Bit5

r/w
enable for interrupt 4

Bit6

r/w
enable for interrupt 5

Bit7

r/w
enable for interrupt 6

Bit8

r/w
enable for interrupt 7

Bit9

r/w
enable for interrupt 8

Bit10

r/w
enable for interrupt 9

Bit11

r/w
enable for interrupt 10

Bit12

r
status of interrupt line 0

Bit13

r
status of interrupt line 1

Bit14

r
status of interrupt line 2

Bit15

r
status of interrupt line 3

Bit16

r
status of interrupt line 4

Bit17

r
status of interrupt line 5

Bit18

r
status of interrupt line 6

Bit19

r
status of interrupt line 7

Bit20

r
status of interrupt line 8

Bit21

r
status of interrupt line 9

Bit22

r
status of interrupt line 10

Bit23

r
logical OR of enabled interrupt lines

Bit23

w stop processor clock

Interrupts are assigned:

int 0

UART receiver data ready

int 1

UART transmitter buffer empty

int 2

second UART transmitter buffer empty

int 3 event interrupt

int 4

second sync

int 5

minute sync

int 6

stack problem

int 7

timer

int 8-10
unused

The interrupt enable bits are all initialized to 0 by power-on reset. Note that after performing an interrupt, the interrupt controller will (without clearing bit 0) disable further interrupt servicing until after the next RTI instruction is executed. Interrupt lines 0, 1, and 2 are dedicated to the UART receive and transmit functions. Interrupt line 0 is set after a character is received by the UART and is cleared by reading the data at Gbus address 1 (least significant 8 bits). Interrupt lines 1(2) is set after the UART #1(2) transmitter buffer is empty is cleared by writing a character to Gbus address 1(2) (least significant byte).

Read of Gbus addresses 2 and 3 return 0 and 1 respectively. (Special assembler words “zero” and “one” compile the instructions to read Gbus addresses 2 and 3.)

The Live Time Counter (g@5) is a 24-bit binary counter that counts 5 usec livetime ticks from the live time prescaler. The counter is reset by the read instruction. The prescaler counts at 6.4 MHz whenever the event readout state machine is waiting for a trigger.

The Coincidence signals (g@8) are latched at the end of the coincidence resolving time by the event state machine and are used to classify the event. The signals are:

	bit
	sig name
	description

	11
	hazard_ff
	hazard if was a previous event within ____ usec

	10
	anti_stim_g8in_ff
	event was generated by falling edge of test pulse

	9
	stim_g8in_ff
	event was generated by rising edge of test pulse

	8
	rndn_gor_2_a_ff
	not used in coincidence

	7
	rndn_gor_1_a_ff
	PHASIC A gor used in high rate mode

	6
	rndn_gor_0_a_ff
	PHASIC A gor used in normal rate mode

	5
	rndn_gor_2_b_ff
	PHASIC B used in anticoincidence

	4
	rndn_gor_1_b_ff
	PHASIC B gor used in high rate mode

	3
	rndn_gor_0_b_ff
	PHASIC B gor used in normal rate mode

	2
	rndn_or_a
	PHASIC A trigger signal

	1
	rndn_or_b
	PHASIC B trigger signal

	0
	stop_req_event
	event sm triggered by stop_req for commanding/rates

The Coincidence Equations are:

mux_out_a = high_rate ? rndn_gor_1_a : rndn_gor_0_a;

mux_out_b = high_rate ? rndn_gor_1_b : rndn_gor_0_b;

logic_out = sel_or ? (mux_out_a | mux_out_b) : (mux_out_a & mux_out_b);

coin_valid = logic_out & (stim_g8in_ff | ~req_stim) &

 ~(rej_anti_stim & anti_stim_g8in_ff) &

 ~(rej_rndn_gor_2_b & rndn_gor_2_b_ff) &

 ~(rej_hazard & hazard_ff) & ~rej_all;

The Spare and Compout bits (g@9):

	bit
	sig name
	description

	8
	no_data
	No data for this event

	7:4
	stack_o/uflow
	s_overflow, s_underflow, r_overflow, r_underflow

	3
	spare in 2
	Spare inputs

	2
	spare in 1
	

	1
	spare in 0
	

	0
	compout
	ADC comparator output

The Trigger Counter (g@10) is a 24-bit binary counter that counts triggers. The counter is reset by the read instruction. Triggers equation is:

(lop_or_a * ~dis_lop_or_a) | (rndn_or_a * ~dis_rndn_or_a) |

(lop_or_b * ~dis_lop_or_b) | (rndn_or_b * ~dis_rndn_or_b) | stop_req.

Note that stop requests are counted, can be subtracted out.

PHA ASIC Control bits (g!4):

	bit
	signal
	description

	0
	stop_req
	stop event sm for commanding/reading rates

	1:3
	unused
	

	4
	token_in
	PHASIC readout and commanding control bits

	5
	read_reset
	

	6
	adc_read_sel
	

	7
	cmd_data_in
	

	8
	cmd_clk_in
	

	9
	cmd_reset_n
	

	10
	ctr_reset
	

	11
	pha_reset
	

	12
	clg
	

	13
	uptestpulse
	program generated test pulse

	14
	cmd_strobe
	

	15
	read_clk_in
	

	16
	clkon
	turn on PHASIC 32 MHz clock

	17
	uptpen
	select microprocessor test pulse mode

	18
	upen
	select microprocessor PHASIC readout mode

	19:23
	unused
	

Test Pulse Period, Spare Output Bits, (g!5):

	bits
	sig name
	description

	16
	spare_12
	Spare Output Bit

	15
	spare_11
	Spare Output Bit

	14
	spare_10
	Spare Output Bit, selects evproc_state (1) or {s_overflow, s_underflow, r_overflow, r_underflow} (0) as debug_out

	13:0
	tp_period
	Test Pulser Period, units of 80 usec

Interrupt Reset and Control bits, (g!6):

	bit
	sig name
	description

	5
	reset_timer
	 Pulse to reset the timer interrupt

	4
	sp_reset
	 Pulse to reset the stack problem interrupt

	3
	min_reset
	 Pulse to reset the minute interrupt

	2
	sec_reset
	 Pulse to reset the second interrupt

	1
	einit
	 Pulse to reset the event controller

	0
	intack
	 Set high after event interrupt

 Set low after reading PHA data

DAC control signals (g!7):

	bit
	sig name
	description

	10
	sdata
	serial data to 24-bit shift register

	9
	sclk
	clock to shift register, data shifted on positive edge

	8
	sload
	load data from shift register to output register

	7:0
	hk dac
	housekeeping DAC data, the positive input to the ADC comparator

The 24-bit shift register bits: (msb first)

	bits
	sig name
	Description

	23
	plsra_rng
	PHASIC A test pulse level range control

	22
	plsrb_rng
	PHASIC B test pulse level range control

	21
	hk_mux1
	select housekeeping ADC multiplexer output

	20
	hk_mux0
	

	15:8
	plsrb_dac
	PHASIC B test pulse level DAC

	7:0
	plsra_dac
	PHASIC A test pulse level DAC

The Housekeeping Multiplexer:

	hk_mux1
	hk_mux0
	Multiplexer Output

	0
	0
	preoutA

	0
	1
	preoutB

	1
	0
	temp1

	1
	1
	temp2

Trigger, coincidence mode bits (g!9):

	bit
	sig name
	description

	0
	high_rate
	set high rate coincidence mode

	1
	sel_or
	select coincidence function: 1(or, 0(and

	2
	rej_rndn_gor_2
	select anticoincidence function

	3
	req_stim
	require test pulse

	4
	rej_anti_stim
	reject anti_stim pulse

	5
	rej_hazard
	reject hazard events

	6
	dis_lop_or_a
	disable lop_or_a from trigger equations

	7
	dis_lop_or_b
	disable lop_or_b from trigger equations

	8
	dis_rndn_or_a
	disable rndn_or_a from trigger equations

	9
	dis_rndn_or_b
	disable rndn_or_b from trigger equations

	10
	reg_all
	reject all events

Timer control (g!10):

	bit
	sig name
	description

	7:0
	 et0
	Event timer 0, clg low to pharst low

	12:8
	 et1
	Event timer 1, coincidence resolving time

	17:13
	 et2
	Event timer 2, rndn-or low to clg low for rejected events

	22:18
	 haz
	Hazard timer

