Serial Port Interface to TCP/IP (SPiT)

Programmer's Reference

T. Nolan

April 22, 2002

Overview

This document describes the operation of the Serial Port Interface to TCP/IP (SPiT) software. SPiT is a program that resides in the PC that is connected directly to the P24 MISC instrument controller board via two serial cables. The HET flight software, running on the P24 MISC, communicates with SPiT through the two serial port connnections. SPiT presents a TCP/IP interface to external programs that need to gain access to the flight software serial data. The following diagram illustrates this concept.

GSE Operation through Serial Port Interface to TCP/IP

SPiT Configurations

As the figure shows, ground support equipment (GSE) can communicate with the HET instrument in three different configurations (labeled “GSE-1,” “GSE-2,” and “GSE-3”).

Single PC. GSE-1 is running in the same PC that SPiT runs in. Thus, the simplest setup involves only one PC for instrument support software. The single PC runs SPiT, Tbug (the visual debugger), and one or more GSE programs that can send commands and receive telemetry. In this setup, Tbug and GSE-1 use TCP/IP socket functions to communicate with SPiT, but the communications never leave the PC. In this mode, the socket connections provide interprocess communications.

Locally networked PC. GSE-2 is running on a PC that is connected to the SPiT PC via a local-area network. The GSE opens a client-side connection to SPiT using socket functions, knowing the IP address of the server PC and SPiT’s well-known port number. Although it is not shown in the diagram, Tbug can run in this configuration as well. Thus, one PC can be dedicated to instrument control (running SPiT with serial port connections to the instrument) and another computer in the lab can contain the development tools and instrument control software.

Remote PC. In the third configuration, GSE-3, the GSE software and SPiT software run on separate Internet host computers. The GSE opens a client-side connection to SPiT using the SPiT host computer’s assigned Internet name or IP address and SPiT’s well-known port number. This configuration could be useful if the HET instrument were operating at a remote location (e.g., for calibration or integration), since real-time data could thereby be acquired at GSFC.

Up to five TCP/IP sessions can be established at once, and each session can request any combination of command or telemetry access. GSE software in all three configurations (single PC, local, and remote) could be operated simultaneously. This has operational benefits, since it can be useful to have more than one telemetry stream and command console. For example, a dedicated logger application could be running constantly to perform the simple task of capturing all telemetry and storing it to disk. Moreover, Tbug, if it is running, needs command access, and a separate instrument command console may run simultaneously. SPiT does not currently perform any validation or identification. While it would be difficult for someone to inadvertently command the instrument, a determined person could do so. A security layer can be added at a future time.

Theory of Operation

The basic theory of operation of SPiT is simple. SPiT opens a server-side socket and listens for remote connections. A GSE program opens a client-side connection to SPiT through its host computer IP address or name and its well-known port. After the socket pair is connected, the GSE sends a packet notifying SPiT that it wishes to establish one or more of the following communications sessions: (1) send commands to instrument through command port; (2) receive command response information from instrument through command port; (3) receive telemetry from instrument through telemetry port.

All information, including the initial session type packet, is transmitted between the GSE and SPiT in packets. The packet format is as follows:

Serial Port Interface to TCP/IP (SPiT) Packet Format

	Length
	Opcode
	Parameter
	Data

	4 bytes
	4 bytes
	4 bytes
	Variable=length-8

The length word gives the number of bytes to follow (not including the length word itself). The opcode determines the nature of the packet. Four opcodes are currently defined: Session, Command, Response, or Telemetry. The parameter is a subcode that further defines the opcode. The data field is variable-length, and dependent upon the opcode. For session packets, there is no data (length = 8), and the parameter specifies the session type (one or more of the bits representing command, response, and telemetery). For command packets, the data is the serial string that is to be sent as-is to the flight instrument. A newline ordinarily terminates this string. For response packets, the data field contains the ASCII characters sent by the flight instrument as-is. A carriage return-newline pair ordinarily terminates this string. For telemetry packets, the data field contains a 272-byte CCSDS telemetry packet sent by the flight instrument (length=280).

When the GSE establishes a telemetry session, it will begin receiving telemetry packets from the instrument as soon as it sends the session packet (assuming the instrument is generating telemetry). No acknowledgements are needed or expected. If the GSE computer stops receiving for some reason (i.e., it is taking too long to process a packet) the SPiT will drop packets until the socket unblocks.

Response sessions operate in a similar manner to telemetry sessions. When the GSE establishes a response session, it will begin receiving response packets as soon as it sends the session packet. It may be convenient to separate the response from the command session in this way to simplify the software design. For example, there could be a simple console application that issues a “printf” every time it receives a response packet.

Command sessions receive no data from the instrument. Instead, after the GSE sends a session packet to initiate a command session, SPiT waits for command packets from the GSE. The data field from ach such packet is extracted and written to the serial port just as if it were keystrokes received through a terminal.

Functions are provided to format, send, and receive packets. Notification of packet arrival can be accomplished through Winsock system calls (e.g., WSAAsyncSelect()).

Packet Formats

Opcodes and Parameters

	Opcode
	Parameters
	Description

	OP_SES (1)
	SES_SNDCMD (0x10)
	Establish new session; send commands to instrument

	
	SES_RCVCMD (0x20)
	Establish new session; receive command responses from instrument

	
	SES_RCVTLM (0x40)
	Establish new session; receive telemetry data

	OP_CMD
	0
	Command for delivery to instrument

	OP_RSP
	0
	Command response from instrument

	OP_TLM
	0
	Telemetry data packet from instrument

Commanding session. To send commands to the instrument through SPiT, a program sends a packet with OP_SES and SES_SNDCMD in the opcode and parameter fields. The data field is empty. The length is 8 bytes, not including the 4-byte length field itself. This packet should be the first thing sent after the socket connection is established. There is no acknowledgement. After sending this packet, the program can send command packets. A command packet has OP_CMD in the opcode field, zero in the parameter field, and a non-empty data field. SPiT transmits the contents of the data field to the instrument over the command serial port as-is. If a carriage return is part of the command string, it must be included in the data field.

More than one PC can establish a commanding session. SPiT simply serializes access to the instrument among multiple command sources. The command PCs must coordinate command activity among themselves. For example, Tbug, the interactive debugger for the MISC chip, can be configured to operate remotely through SPiT. It establishes a session for commanding and responses, and communicates in this manner with Tmon running on the MISC. While the target program under test is running, that program may respond to higher-level commands, which can be sent from a GSE program. The GSE program also needs to have command access at the same time as Tbug.

Response session. The instrument ordinarily responds to each command it receives. It sends these responses over the command serial port. In order to receive these responses, a GSE program must send an OP_SES packet with the SES_RCVCMD bit set in the parameter field. This parameter may be combined with SES_SNDCMD to be able to send commands and receive responses. However, note that only one OP_SES packet can be sent per session, and it must be the first packet sent after completing the socket connection. All desired accesses must be placed in the parameter field of this one OP_SES packet.

A GSE that has requested command responses will begin receiving OP_RSP packets. In an OP_RSP packet the parameter is zero and the data field will contain the command response as it was received from the instrument over the serial port. SPiT uses a timeout setting on the serial port such that, in general, each packet will contain a complete line of text transmitted by the instrument. However, this behavior is not guaranteed, and a GSE may have to assemble one or more OP_RSP packets if the response is lengthy or irregularly timed.

Telemetry session. A GSE can request access to telemetry data by setting the SES_RCVTLM bit in the OP_SES packet. Once this packet is received, SPiT begins delivering telemetry to the GSE. A telemetry packet has OP_TLM in the opcode field and zero in the parameter field. The data field is ordinarily 272 bytes long (so the length field is 280). Multiple GSE programs can request simultaneous access to telemetry data. SPiT sends each telemetry packet to every connected program with an active telemetry session.

Software Interface

The WinTCP software package contains functions to establish a client-side connection and to send and receive packets in the format used by SPiT. It also contains all the server-side functionality that SPiT itself uses – SPiT is linked with Win TCP. The package is self-documented. The following table lists the functions and their operation.

WinTCP Functions

	Function
	Description

	Int net_startup(void)
	Wrapper for WSAStartup. Call this function before making any other calls to Winsock. You must call net_cleanup() before terminating.

	Void net_cleanup(void)
	Wrapper for WSACleanup().

	Void net_debug(int debug)
	Enable verbose output (debug==1) or terse output (debug==0).

	SOCKET net_open(char *host, char *service, int port)
	Open client-side connection to SPiT server. Specify host name and port number. Set service to NULL.

	Void net_close(int s)
	Close a connection that has been opened with net_open(). Pass the socket that net_open() returned. (Should be declared as type SOCKET).

	Int sendPKG(int sockfd, int opcode, int param, void *data, int ldata)
	Format and send SPiT packet. Sockfd is the socket returned by net_open(). Opcode, param, and data are the corresponding fields in the packet. Ldata is the length of the data array in bytes. Total packet length must not exceed MAXBUF, a defined constant in WinTCP.h. Returns a negative value on error. Returns the number of bytes actually written to the socket on success, which can be less than the entire packet if the socket is nonblocking.

	int recvPKG(int sockfd, int *len, int *opcode, int *prm, void *data)
	Receive a SPiT packet. Len gets filled in with the length of the data field, opcode, prm and data get filled in with the corresponding fields in the packet. This should only be called on a blocking socket. It returns a negative value on error or timeout. The timeout value is set by defined constants in WinTCP.h. On success, returns the value of the opcode.

	int recvPKGn(int sockfd, int *len, int *opcode, int *prm, void *data)
	Non-blocking version of recvPKG. Call when sockfd is a non-blocking socket. Can return a negative value if the read would block. However, it will never return a partial packet. On success, returns the value of the opcode.

Most of these functions are capable of generating diagnostic output when verbose output is enabled (net_debug(1)) and most are capable of generating error messages even when terse output is enabled (net_debug(0)). The output is done through console output functions ConsoleOut, DebugOut, ErrorOut, and WinsockErr. Each of these functions follows the same argument convention as printf(). The first argument is a character string that contains characters plus optional formatting codes, and optional arguments to be formatted follow. These functions all equate to printf() in a console application. In a windows application, you will have to provide substitute functions. You could, for example, create wrappers for sprintf and MessageBox. SPiT uses functions in ConsoleWin.cpp that create a scrolling text box that has the appearance of a console window.

A sample client application, dclient, is provided to demonstrate the simplest way to interact with SPiT. It is a console application that establishes a telemetry session and prints a line to the console every time a telemetry packet is received.

A more sophisticated example can be found in the Tbug source code. When networked operation is specified, Tbug opens a command and response session, sets its socket to non-blocking, and requests asynchronous notification of socket events through WSAAsyncSelect(). In this manner, Tbug gets a message every time a packet is sent by SPiT and is available for reading by Tbug.

Ethernet

Commands

Telemetry

GSE-2

MISC CPU24

PHA Chip

SPiT

GSE-1

GSE-3

Internet

Tbug

PAGE
6

