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1. How to Use This Document

This document has two purposes.  First, it serves as a reference for the HET and SIT flight software systems.  In this regard, the document sets forth the general architecture of the flight software and describes the major subsystems – command and telemetry – in detail.  The reference material is designed to help the HET and SIT science teams understand the information delivered by the instruments.  Second, this document describes the components of the flight software and shows how they fit together.  This information is designed to assist in the maintenance of the flight software, from editing the code to rebuilding the binary images.

Those seeking a general description of the flight software should consult Sections 3 (Architecture), 4 (Commanding) and 5 (Telemetry).  Section 6 (Status Indicators) describes the telemetry items created in the flight software (as opposed to items read from hardware or computed according to external specifications).

Those seeking to modify or rebuild the flight software should review Section 2 (Hardware Description) and consult Sections 3-5 to aid in understanding the flight code.  In addition, the listing file created by the assembler (***.lst) contains absolute addresses in RAM that may be important in testing and debugging, even in flight (via the “peekw” and “modw” commands).  Section 7 lists the source files that contain the various flight software components and gives the procedures for assembling them and creating the flight software images.  Several custom tools are used in this process, which are also described in Section 7.

2. Hardware Description

This section describes the hardware environment in which the flight software operates.  The flight microprocessor is the GSFC customized CPU-24 version of the P24 processor.  This processor is implemented in a gate array, which also contains glue logic and timing for the flight digital electronics.  The CPU has a 24-bit word length, 32 arithmetic and logic instructions, and 32 input/output instructions.  

The CPU has local RAM.  However, it has no permanent program storage.  At power-on, the CPU begins executing a small hardware-based boot routine, which receives program code over the serial port.  The program code is stored in sequential words in RAM.  After the program download is complete, the CPU transfers control to the start of the program at address 1.  

The program code for HET and SIT is stored in EEPROM in SEP Central.  After power-on, SEP Central sends the entire program load, including code and initialized data, to the CPU using the serial boot protocol.  

The CPU has three major interfaces: a bidirectional serial port for commanding, a unidirectional serial port for telemetry, and a customized interface to the detector digital electronics for event handling.  The two serial ports are connected to SEP Central.  HET and SIT are expected to be ready to receive commands at any time.  However, transmissions from HET or SIT take place according to a timing protocol.  Information sent by the instrument to SEP Central at the wrong time will be lost.  For outgoing information on the command port, SEP Central listens during a _______ second interval after it sends a command to the instrument.  This allows the instrument to return a response to SEP Central.  However, it should be noted that commands are actually executed by HET and SIT only on one-minute boundaries.  Therefore, the command response cannot contain any results of command execution.  It can only contain command validation information.  

For outgoing information on the telemetry port, the timing protocol is based on the one-second and one-minute pulse trains.  Each instrument has a predefined series of windows in each minute in which it is permitted to transmit telemetry information.  HET and SIT transmit one complete packet during each transmission window.  After all allocated telemetry has been delivered, the instrument sends zero-filled packets.

The third major interface, the detector command and readout system, operates using the read and write registers of the CPU.  The HET and SIT instruments differ in the nature of the detector interface.

The one-second and one-minute interrupts are derived from SEP Central signals.  The error interrupt occurs when a stack overflow or underflow condition is detected.  This interrupt is not used in flight.  Finally, the timer interrupt is derived from a programmable timer built into the CPU.  It is used for ADC sampling.
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There are two STEREO spacecraft, and each one has a complete instrument suite including HET and SIT.  The two HET instruments run identical code, as do the two SIT instruments.  However, the uploadable tables are different for the two instrument packages.  The two flight instruments are referred to as FM1 and FM2.  In addition, each instrument has an engineering model, referred to as EM, which may have its own unique set of tables. 

3. Flight Software Architecture

The HET and SIT flight software operate in a background loop with interrupt service routines to respond to external events.  On power-up, a one-time startup section executes before interrupts are enabled and the background loop begins executing.  In nearly all of their top-level architecture, HET and SIT are identical.  Instrument-specific differences are noted in the discussion below.

3.1. Startup Code

Both instruments follow the same startup routine.  First, the interrupt vector at address 1 is replaced with a pointer to the interrupt 0 service routine.  The other interrupt vectors are hard-coded and loaded at boot time.  However, during the boot sequence the interrupt vector at address 1 contains a jump to the startup code because it is used by the boot loader to transfer control to the program after booting.

Next, the packed table image is located, and the tables are unpacked and relocated to their working locations.  Before unpacking and expanding the tables, the entire table are is filled with zeros.  The packed table image begins on the next 128-word boundary after the end of the program code.  Each packed table begins with a three-word header, which contains (in order) the destination or working address, the number of words in the expanded image, and the compression type (one, two, or three bytes per word).  Armed with this header information, the flight software expands and copies the table to its correct destination.  Each subsequent packed table image also begins on a 128-word boundary, and the table expansion process continues until an invalid address (-1) is found in the first header word.

Next, the “BSS” area (a term from C meaning the uninitialized static data) is set to zero. Next, any variables whose values need to be non-zero at startup are initialized.  The four queues for the command receiver, command transmitter, telemetry transmitter, and raw events are set up.  Next, the event detection front-end system and other hardware is initialized, and the science data processing routines are initialized.  Finally, interrupts are enabled and control is transferred to the background routine.  At this stage, the interrupts corresponding to the two serial port transmitters are not enabled.  For each serial port, a queued output system is maintained, and the transmitter interrupt is enabled only when there are bytes in the queue ready to be transmitted.  

3.2. Interrupt Handling

The CPU24 design can handle 11 prioritized interrupts, of which the HET and SIT flight software use the first 8.  Interrupt 0 is the highest priority, and interrupt 7 is the lowest priority.  Interrupt service routines execute with interrupts disabled, so the priority mechanism only comes in to play when more than one interrupt is pending at one time.  The following table lists the interrupt assignments.

	int 0
	UART #1 (command) receiver data ready

	int 1
	UART #1 (command) transmitter buffer empty

	int 2
	UART #2 (telemetry) transmitter buffer empty

	int 3
	event interrupt

	int 4
	one second interrupt

	int 5
	one minute interrupt

	int 6
	stack problem

	int 7
	timer


The flight software uses two different interrupt entry-exit schemes.  Each interrupt service routine begins with a call to “EnterISR” or “EnterISRAlt,” reflecting the simple entry-exit scheme or the alternate scheme.  Both of these entry functions save the A register and the carry flag on the return stack, and rearrange the return stack so that when the ISR executes a “ret” instruction control is transferred to “ExitISR” or “ExitISRAlt,” respectively.  Then the entry function returns and control is transferred to the next instruction of the ISR.  

EnterISRAlt performs an extra step.  Before returning control to the ISR, it saves the current interrupt enable mask on the R-stack, and then enables only interrupt 0 (the receive character interrupt), returning with interrupts enabled.  It does this so the receive character interrupt is not disabled for any length of time.  The character receiver, operating at 56K baud, can interrupt at a sustained rate of 5 kHz. EnterISRAlt also enables the stack problem interrupt, so the software can catch a stack error as early as possible.

An ISR using the EnterISR scheme executes with interrupts disabled.  The ISR and any called routine may change the interrupt mask (enable or disable individual interrupts) but it cannot set the global interrupt enable bit.  When ExitISR regains control (ISR issues a ret instruction), it implicitly sets the global interrupt enable bit by executing an rti instruction.  

The situation is more complex with the EnterISRAlt scheme.  In order to re-enable certain interrupts during the ISR, EnterISRAlt returns to the calling ISR with an rti instruction and the global interrupt enable bit turned on.  The interrupt mask has been set to allow only the restricted interrupts.  However, ISR code may need to enable or disable further interrupts.  The problem is to recognize which interrupts have been enabled or disabled by the ISR code, and whether to give effect to those changes.  The solution chosen for this implementation is to permit the ISR code only to enable the telemetry UART transmitter output interrupt.  Both the one-second and one-minute ISRs need to decide whether to begin transmitting  telemetry, and this scheme permits them to do so. Accordingly, when ExitISRAlt regains control (ISR issues a ret instruction), it combines the telemetry UART transmit enable bit with the saved interrupt state using an OR operation, and returns to the point at which the interrupt occurred.

3.3. Background Processing

The flight software operates on a simple foreground-background principle.  The background loop is performed continuously, and interrupted by one of the prioritized interrupts described above.  Interrupt processing is self-contained as much as possible, so there does not have to be any background-level processing after an interrupt is dismissed.  However, several of the interrupt service routines may set flags that are tested and reset by the background routine.

Background tasks fall into three categories:  continuous, once per second, and once per minute.  

Continuous background processing.  On a continuous basis, the following tasks are performed:  

· Test for special diagnostic commands (push, dup).  These commands can be used to estimate the stack depth of the return stack and the parameter stack, respectively, during flight software operation.  They are destructive, however, and will eventually cause the system to crash.

· Check H1 event queue, dequeue 1 event if non-empty, process event

· Check stopping event queue, dequeue 1 event if non-empty, process event

· Check penetrating event queue, dequeue 1 event if non-empty, process event

· Check for and process any queued characters at command serial port. This is the first step of the command processing, in which incoming characters are deqeued and buffered into complete commands.  When a complete command is detected (by the newline or return terminator), it is syntax checked and placed in a second-level queue.  A command that does not pass the syntax check is not queued, and an error flag is set.

· In immediate mode, check for and process any completed and queued commands. Normally the immediate mode flag is off, and commands are dequeued and processed only at major-frame time.

· Handle delayed telemetry flag.  This flag is set if the major frame (one-minute) sync pulse is detected during the transmission of a packet.  This happens only because HET is required to send empty packets to SEP Central throughout the one-minute cycle.  The flag is set at the end of the packet transmission, and the major frame processing is called from the background instead of from the one-minute interrupt service routine.

· Check for and handle clock gating.  When enabled (clkgating == 1), the processor clock will be turned off at the end of the continuous background loop, but only if all three particle queues were empty.  The reason for this further check is that if any queue has more than one event, it could be never emptied if the clock is only restarted when the next event arrives.

Once per second background processing.  The one-second (minor frame) sync pulse causes an interrupt once per second.  The interrupt processing is described elsewhere.  The interrupt service routine sets a flag to let the background routine know it has executed.  The background loop checks and clears this flag, then if it was set performs the following tasks:

· Test for command timeout.  When the first character of a command is received, a counter is started and incremented once per second.  If it reaches a count of 300 (5 minutes) before a complete command is received and processed, the partial command is discarded and an error flag is set.

Once per minute background processing.  Similarly to the one-second flag, the one-minute flag is set by the minute sync interrupt service routine.  The background loop checks and clears this flag, and if it was set performs the following tasks:

· Start next sweep of 4 ADC channels.  Each ADC reading is taken through a software rundown. The individual steps in the rundown are triggered by the clock interrupt.  Once the sweep is started,  all 4 ADC channels will be set and run down and the results placed in memory.  This process will be completed before the next one-minute sync, and the digitized results from this sweep will be placed in the next frame.

3.4. Event Handling

The following tables define the raw and compressed event data formats.  Raw events are read out from the PHASIC hardware.  The event readout takes place in the event interrupt service routine.  Hardware readout continues until the last event word is read, signaled by a 1 in the Tok bit.  The Stim bit is not set by the PHASIC.  Instead, the software recognizes a stimulus event through a separate register, and sets or clears the Stim bit based on that indicator flag.

Raw events are assigned to queues based on event category.  Once the raw event is placed in the appropriate queue, the interrupt-level event processing is complete.

	Raw Event Format (23 bits)

	23
	22-20
	19
	18-15
	14
	13-12
	11
	10-0

	Tok
	ChipAdd
	Stim
	PhaAdd
	Gain
	Rsvd
	Ov
	PH


	Tok
	Token bit, set to 1 on last PH of event

	ChipAdd
	Chip address, 0 or 1 in HET system

	Stim
	Stimulus event, set in software 

	PhaAdd
	Pha address (ChipAdd + PhaAdd uniquely identify detector)

	Gain
	High/low gain

	Rsvd
	Reserved, unused

	Ov
	Overflow bit

	PH
	Pulse height


The background routine examines the event category queues and processes queued events in round-robin fashion.  Processed events are compressed from 23 to 16 bits, and a header word (16 bits) is prefixed.  The software counter bin number is assigned and attached in the event header.  The event also has the number of event words, because the token bit was dropped in the compression.

The chip address and pha address read out of the PHASIC hardware are combined into a single 3-bit detector number in the compressed event.  There is a lookup table, ADDR_TAB, which contains 32 entries (16 entries x 2 PHASIC chips).  Each entry is either 16 (no assignment) or the PHA ID number 0-6 associated with the given chip address/pha address combination.  The lookup table is uploaded and unpacked with the initial flight software table load.

	Compressed Event Format (16 bits)

	15-13
	12
	11
	10-0

	PhaID
	Gain
	Ov
	PH


	PhaID
	Pha ID number: 0=H1i, 1=H1o, 2=H2, 3=H3, 4=H4, 5=H5, 6=H6, 7=Invalid

	Gain
	High/low gain setting 

	Ov
	Overflow bit

	PH
	Pulse height


	Compressed Event Header (16 bits)

	15-13
	12
	11
	10-3
	2-0

	Cat
	Mode
	Stim
	SW Bin
	PH Cnt


	Cat
	PH category

	Mode
	HET rate mode

	Stim
	Stimulus event flag

	SW Bin
	Software counter bin number 0-107

	PH Cnt
	Number of compressed event words to follow


3.5. Leakage Current Balancing 


The leakage current balancing occurs once per minute during enforced deadtime.  Every minute, one detector from each PHASIC is selected for the balancing function.  The same schedule is used for detector housekeeping readout, and in fact the two functions are combined in the software.

First, the housekeeping channel multiplexers are set to point to the selected detectors (one in PHASIC 0 and one in PHASIC 1).  HET has a four-channel housekeeping multiplexer, and all four channels are read out in one sweep.  The two preamp outputs are found in multiplexer channels 0 and 1.  

However, before the four ADC values are read out, an adjustment is made to the input resistance DACs for the selected detectors with the intention of causing a 0.3V downward shift of the preamp output.  The 0.3-volt shift temporarily move the preamp output voltages into the range for which the buffer amp operates in the linear range.  This shift is always performed, regardless of whether the leakage current balancing algorithm is enabled.  The shift computation is set forth below.

After the input resistance DACs are adjusted, the four ADC channels are read out.  The software uses the built-in timer (interrupt 7) to enforce a settling time between each multiplexer setting and the corresponding ADC reading.  Each ADC channel voltage is digitized into an 8-bit reading.  The four channels are stored for housekeeping readout.  The two input resistance DAC settings are then restored to their original values, before the 0.3V adjustment.  However, the adjusted values are saved for the housekeeping telemetry.  In this manner, the housekeeping values are always consistent: the input resistance DAC setting read out in the housekeeping is the setting at which the telemetered preamp output was measured.

The leakage current balancing algorithm, if enabled in software, then computes new input resistance DAC settings for the selected detectors.  The target for each preamp reading is 50, which corresponds to a preamp output of 4.0 volts.  (Full scale is 5.0V, and the preamp ADC reads out in two’s complement, so a reading of 0 is full scale and 255 is 0V.  The formula is Volts = 5*(256-reading)/256.) 

The difference between the actual reading and the target reading of 50 is used to adjust each preamp input resistance DAC setting to move the preamp output voltage to the 4.0V target.  However, because the offset has been added back to “undo” the 0.3-volt shift, the actual target for the preamp output voltages is 4.3V.  The adjustment computation is set forth below.  

The computations described above are performed in a transformed coordinate space.  The raw input resistance DAC setting is specified in “N12” format, in which the least significant 5 bits is referred to as N1 and the most significant as N2, with the injected current given by:

current = (1uA)*(N2 + N1*10/256).      (1)

However, for ease of computation, another representation, “N3” format, is more convenient.  The conversion from “N12” to “N3” is given by:

N3 = [2^16]*N2 + 10*[2^8]*N1          (2)

Hence N3 is a number that is proportional to the injected current and has units of about 2^-16 uA.  The algorithm for converting from “N12” format to “N3” format just implements equation (2).  To go back the other way, N3 is divided by 2^16 to get N2 and the remainder is divided by 2560 to get N1. (Due to the non-monotonicity of eq (1), there are sometimes two different “N12” format settings that yield about the same injected current, but have N2 different by 1 and N1 different by about 26. This method of going from “N3” back to “N12” picks the setting with the large value of N2.) 

The 0.3 Volt offsetting is done in “N3” space by adding or subtracting 9830*Nf, where Nf is the feedback capacitor setting (Cf = Nf*5p).  The feedback capacitor setting (either 6 or 12 in the HET detectors) is read from the current detector settings as written to the PHASICs.  If the adjustment would be greater than full scale or less than zero, the value is pegged at full scale or zero, respectively.  Before being written to the input resistance DAC, the adjusted value is converted back to “N12” space.

The adjustment based on the difference between the measured preamp output and the target value of 50 is also done in “N3” space by an amount:

dN3 = (ADCVAL-50)*640*Nf

However, if the absolute value of the difference (ADCVAL-50) is less than 2 (i.e. is 0 or 1) no adjustment is made.  Again, care is taken that the adjusted value does not exceed full scale or go lower than zero.  The adjusted input resistance DAC setting is saved for the housekeeping telemetry.  

After the leakage current balancing is performed, the new input resistance DAC settings are sent to the PHASICs.  The 0.3V offset was already added back in after the ADC readouts, so the operational preamp settings for the next major frame will be targeted to 4.3V.  

The ADC readouts and the leakage current balancing processes take place after the formatting of the major frame that will be read out during the next minute.  This way, the telemetry is internally consistent.  The housekeeping readouts, including the input resistance DAC settings, that appear in any given telemetry frame are those that were used in the generation of the accompanying science data.

4. Flight Commanding

All commands are received from SEP Central over the bi-directional serial port. The transmission scheme is asynchronous, character-by-character.  The baud rate is 57600.  After the transmission of a command string is completed, SEP Central listens on the same command port for ____ milliseconds.  This is the window in which HET/SIT must transmit a response.  The command response is a printable ASCII string.  The response provides confirmation that the command was received, and permits a determination in which major frame the command will be executed.  After the response, the flight instrument issues its prompt (either “HET>” or “SIT>”). SEP Central collects responses and prompts from all instruments and multiplexes them into packets that it transmits as part of its own telemetry stream.

Commands may be received by HET or SIT at any time, but they are normally executed only on major frame boundaries.  This strategy helps preserve the integrity of each major frame.  However, certain commands are executed immediately, and an immediate mode is available in which all commands are executed as they are received.  In normal (non-immediate) mode, commands are executed after the telemetry packets are built from the previous frame’s data and before events are reenabled for the next major frame.  That is, the following sequence of events occurs at the end of each major frame:

· Events are disabled

· Telemetry is formatted for transmission during the next major frame

· Event counters are cleared for next major frame

· Commands that arrived during the previous major frame are executed in the order in which they were received

· Events are reenabled.

The flight software maintains a circular queue of incoming characters.  The arrival of a character at the bi-directional serial port triggers the highest-priority interrupt in the flight processor.  The interrupt service routine simply reads the character from the serial port and writes it to the incoming character queue.  No interpretation is done at this stage.  The queue can hold 2048 characters. The interrupt is dismissed after this short service routine.

The background routine regularly checks the incoming character queue.  When a character is present, it is dequeued and passed to a finite-state machine.  The task of the finite-state machine is to accumulate and recognize complete commands, issue a response to SEP Central when a command is complete, and place completed commands in another queue for execution at the next major frame.  The command response is issued at the time the command is placed in this second-level queue, which generally occurs after only a very short delay from when the last character is received.  No response is issued when the command is actually executed (SEP Central would not be listening at that time anyway).  If a command is not executed due to an error at execution time that was not detected during the preprocessing step, a software error flag is set.  The command that caused the error can be identified by examining the “command processing error” bit flags.  The 16 bits in this variable, numbered from least significant to most significant, correspond to the sequence numbers of the commands received during the previous major frame.  Each bit is set to 0 or 1 if the set if the corresponding command was executed correctly or caused an error, respectively.  

Commands that are sent to SEP Central for execution by HET or SIT are preceded by an identifier that informs SEP Central which instrument the command is destined for, and whether the command is ASCII or binary. These command keywords -- “HET-CMD” and “HET-BIN” for HET, and “SIT-CMD” and “SIT-BIN” for SIT -- which precede any sequence of commands routed through SEP Central, are interpreted by SEP Central and not passed through to the instrument.  However, in order to maintain compatibility during instrument testing, these commands actually are recognized by HET and SIT respectively and treated as a no-op, with no echo.  Therefore, if they are inadvertently sent directly to the flight instrument there will be no error.

Command syntax is very simple.  Each command consists of a mnemonic keyword followed by zero or more numeric arguments.  The complete list of valid keywords for HET and SIT is set forth in the tables at the end of this section. All numeric arguments are interpreted as hexadecimal numbers (e.g., the parameter “10” means the number 16).  Valid characters for numeric arguments are 0-9, a-f, and A-F.   Commands must end with either a carriage return or a line feed (ASCII 0x0d or 0x0a). 

The flight software performs minimal command syntax checking.  You should not rely on the flight software to screen invalid commands.  A few general rules for processing invalid commands can be stated.  A command mnemonic with extra characters at the end will be interpreted as though the characters were not present (i.e, “immediate” and “immed1” are the same as “immed”).  A command with too few arguments will be interpreted as though zero-valued arguments were appended to the command to fill the missing arguments (i.e., “immed” is the same as “immed 0”).  A numeric argument with a non-numeric character (i.e., other than 0-9, a-f, A-F) will be interpreted by discarding the bad character and any characters that come after it.  Commands with arguments that are out of limits are unpredictable.  In some cases, most-significant bits will be discarded, but this is not always the rule.

4.1. ASCII Command Processing

Except for binary commands (described below), all commands are in printable ASCII. They may be terminated by either a carriage return (13) or a newline (10).  The command state machine recognizes a complete command when one of these two characters is received.  It then performs command preprocessing. The command preprocessor takes the following steps:

· If the command string is empty (only a carriage return or newline received), then the instrument prompt is sent over the serial port to SEP Central.

· If the command is one that requires immediate execution, it is dispatched to the command handler.  Immediate execution commands are peekw, immed, load, and dump.  

· If the command string starts with a valid command keyword, then it is queued for later execution, and a command echo is sent, followed by the instrument prompt, both over the serial port.

· If none of the above is true, an error message is sent and the prompt is issued.

For valid commands, the command echo consists of a 4-digit identifier number (in hex) followed by a copy of the command string.  The first four digits of the identifier number are the current 16-bit major frame number, and the second two digits are the command sequence number that is reset to zero in each major frame.  After the identifier, the command string is echoed as it was received.  (The “cmdstr” command has a special echo to avoid repeating the entire 108-character string.  In this echo, the 108-character string is replaced by three dots.)  The command echoes can be parsed to verify in which major frame each command arrived.  Commands that are tagged with major frame N will have been executed before the start of major frame N+1.  

In immediate execution mode (immed 1), commands are queued for processing, but they are pulled off the queue and executed immediately instead of waiting for a major frame.  The command echo contains an asterisk inserted between the identifier number and the command echo.  This asterisk serves as a reminder that the command is executed immediately instead of delayed until major frame time.

Two commands, “immed” and “load,” always generate an immediate-style echo with the asterisk following the identifier number.  These commands are always executed when they are received, without waiting for a major frame.  The operation of the “load” command is described further in the section on binary command processing.

When a command does not begin with a recognized keyword, an error message is sent, consisting of the received command followed by a question mark.  No identification number is sent in this case.

The final portion of the command echo is the instrument prompt, which is sent in all cases (delayed command, immediate command, or error).

Several examples of command echoes follow.

	000901 phacont 0 1 f
	Command received in major frame 0009, will be executed before the start of frame 000A.

	000902 phacont 0 2 f
	Command received in major frame 0009, will be executed after previous command.

	000A01 * immed 1
	Immed command itself is always executed immediately.

	000A02 * phacont 0 5 f
	Command received in major frame 000A, executed immediately.

	000A03 * immed 0
	Immediate mode is off for future commands, including any received in this frame.

	phaconf 0 7 f?
	Syntax error in command, sequence number not incremented. An error flag will be set in frame 000B.

	000A04 phacont 7 f
	Command is missing a parameter, but nevertheless it is executed at the start of frame 000B.  First parameter is interpreted as 1 (only 0 and 1 are allowed), second as f, third parameter is interpreted as zero.

	000A05 lgorsel 0 3 0
	Second parameter is illegal, but the error will not be recognized until the command is executed.  An error flag will be set in frame 000B and the command will be discarded.


4.2. Binary Command Processing

The general scheme for binary command processing requires two steps: first, load a binary table into memory; second, issue an ASCII command to activate the table by copying it to the appropriate memory location and uncompressing it if necessary.  The first step requires sending one or more “binary” commands to the instrument.  These commands allow the efficient delivery of binary data from the ground to the instrument.  The flight software accepts the binary data as a byte stream, buffering it in memory with no interpretation.  Once the binary data has been transmitted, a subsequent ASCII command is necessary to interpret and activate the table.  The ASCII command causes the flight software to copy the buffered byte stream to a specified memory address, which corresponds to a known table location.  The binary data is optionally unpacked, either one or two bytes per table word.  The following subsections describe these two steps in detail.

4.2.1. Loading Binary Data

A binary command consists of an ASCII introducer followed by a binary load package.  The introducer is the ASCII command keyword  “binary.”  This introducer is followed by a carriage return or line feed, just like an ASCII command.  Binary commands do not go through the preprocessing described above.  Instead, when the state machine recognizes the binary introducer keyword, it prepares to receive a binary load package.

The binary load package contains a two-byte length, which is the number of bytes to follow (including checksum), then the command bytes themselves, then a two-byte checksum. Two-byte numbers are transmitted most-significant byte first.  The checksum is the 16-bit sum of all of the 8-bit command bytes.  The following table depicts the binary load package format.    

	0
	Length msb

	1
	Length lsb

	2, . . ., N-1
	N-2 command bytes, where N = Length

	N
	Checksum msb

	N+1
	Checksum lsb


When the finite-state machine recognizes the “binary” command introducer, it does not dispatch it to the command preprocessor as it would for an ASCII command. Instead, it enters a series of states to receive the length, the command bytes, and the checksum.  The binary command load is placed in a large memory buffer (the binary command load staging area).  

When the two-byte checksum is received, the binary command payload is finished.  An echo is sent in one of the following two forms:

binary A:aaaaaaaa N:nnnnnnnn OK


or

binary A:aaaaaaaa N:nnnnnnnn ckserr cccccccc dddddddd

If the computed checksum matches the received checksum, the OK echo is sent.  The number following the “A:” is the relative address (i.e., the byte number within the command load staging area where the binary command payload was placed), and the number following the “N:” is the number of bytes in the command payload.  If the checksums do not match, then the ckserr echo is sent, followed by the received checksum and then the computed checksum.

When large tables are uploaded, multiple “binary” commands are generally sent before the ASCII command is issued to activate the table.  One of the reasons for breaking up large tables into multiple segments is to avoid having to reload the entire table when a checksum error occurs.  To accommodate the receipt of multiple binary packages, the flight software appends the data in each successive binary command payload is to any data already in the command load staging area.  The command echo verifies that this is the case:  in each successive echo the address will be incremented by the length of the previous load.  

When a command load checksum fails, the relative address for the next load package is still incremented as though the load package were received correctly.  This is done so that a large number of command loads may be transmitted, the resulting command echoes examined, and only those loads that were not received correctly may be retransmitted.  Because of this, there needs to be a mechanism to reset the relative address for a retransmitted command packet.  In the absence of such a mechanism, a retransmitted packet would be appended to the command load, not inserted in the middle.  This is the purpose of the “loadat” command.  The retransmission of a failed command packet must be preceded by a “loadat” command, in order to specify the location at which the retransmitted packet is to be inserted.  The “loadat” command simply specifies the relative address for the next command load.  The correct relative address can be extracted from the command echo corresponding to the failed command load.

4.2.2. Activating the Binary Load

A complete binary command load ordinarily consists of one or more “binary” commands with binary payloads, followed by a single ASCII command which may be either “load,” “dload,” or “loadn.”  The ASCII command instructs the flight instrument to copy the binary load from the command load staging area to a specific address in memory, which is the absolute address of the table or memory area that is the ultimate destination of the command load (its target address).  

The “load” version of the ASCII command is used when the initial table set is sent to the instrument after power-up, when multiple tables are being sent in succession, and whenever the precise timing of the table activation is not critical.  The “load” command always executes immediately (regardless of the “immed” flag).  The reason for this is that when multiple tables are to be sent to the instrument, delaying the load operation could cause the binary data in the staging area to be overwritten by the next command load, corrupting the process.  By forcing immediate execution, the integrity of each binary table can be assured.

The “dload” version of the ASCII command is syntactically identical to the “load” command, but its execution is delayed until the next major frame boundary.  (Note that if immediate mode is on, the “dload” command executes immediately and becomes synonymous with the “load” command.)  The reason for a delayed load is to avoid having to discard a major frame that was processed with both old and new tables.  Therefore, when it is necessary to replace a table during instrument operation, the “dload” command should be used to activate the table.

The “loadn” version of the ASCII command accepts an additional parameter, which is the number of bytes that should be transferred from the staging area during the table activation.  This version of the command should be used only when a non-standard binary upload sequence occurred.  Normally, the flight software knows how many bytes were received during the binary upload phase, and that is the number of bytes that will be copied to the active table by a “load” or “dload” command.  However, when a checksum error occurred on one packet of a large sequence and that packet was retransmitted, the flight software loses count.  The “loadn” version can be used in this case to transfer the entire table.

The “load” and “dload” commands accept two parameters.  The first parameter is the absolute address at which the uploaded binary data is to be placed in order to activate the table.  The absolute addresses of the various HET and SIT tables are set forth in the tables below.  The second parameter is the copy method.  There are three copy methods, corresponding to the values 0, 1, and 2 for this second parameter.   Load type zero (24-bit words) packs three bytes into each word at the target address.  Bytes are packed msb, middle, lsb.  The number of words in the table that is actually loaded at the target address is n/3, where n is the number of binary command bytes sent during the preceding binary commands.  Load type 1 (1 byte per word) copies one byte per word to the target address.  The two most-significant bytes of each target word are set to zero.  The number of words at the target address is equal to the number of bytes uploaded.  Load type 2 (2 bytes per word) packs two bytes into each word at the target address.  Bytes are packed msb, lsb (the most-significant byte of each 24-bit word at the target address is set to zero).  The number of words in the table that is actually loaded at the target address is n/2, where n is the number of binary command bytes sent.  

Load types 4, 5, and 6 define a byte-oriented, run-length encoding with various overlay options.  Load type 4 loads successive bytes of the table into the least-significant bytes of successive words in memory, without affecting the other bytes.  Load type 5 loads successive bytes into the middle bytes of successive words, again without affecting other bytes.   Load type 6 loads successive bytes into the most-significant bytes of successive words without affecting other bytes.  In this manner, three different one-byte tables can be loaded into the same area of memory.

Through appropriate use of the load type parameter, some measure of table compression can be achieved.  When each table location contains only one byte (i.e., values range between 0-255), only the one-byte values need to be uploaded to the instrument.  The table is then activated using load type 1, and the byte values are expanded to 24-bit words at the target memory location.  Similarly, load type 2 can be used for tables that contain at most 16-bit values.  Load types 4, 5, and 6 have the potential to achieve a high degree of compression. 

For the “load” and “dload” commands, the number of bytes transferred to the target address is determined by the preceding binary command sequence.  All bytes sent and received during the immediately preceding binary command load sequence (which may consist of one or more individual command loads) are copied into the target load address using the specified load method.  If the number of bytes is insufficient to fill out the last target word (for example, if an odd number of bytes were received and the load method is two bytes per word), the last word in the target area will have zeroes in the extra byte positions.  The “loadn” command accepts an additional parameter – the number of bytes to transfer – and otherwise operates just like the “load” command.  (If the byte count on the “loadn” command exceeds the number of uploaded bytes, the remainder will be undefined.)

After a “load,” “dload,” or “loadn” command, the flight software resets the relative address within the binary command staging area to zero in preparation for the next command load.  When a “load” command is sent with a target address of zero, the command has the effect of forcing the relative address to zero, but no data are transferred.  It would be good practice to issue a “load 0” command before beginning any binary load sequence because the “binary” commands rely on the flight software’s internal pointer mechanism. 

The following command sequence illustrates the concepts described above to load a 1024-word table, where each word is 3 bytes.

	Command
	Response
	Comments

	load 0 
	0100 * load 0 
	Reset load address, prepare for binary load

	binary
	
	ASCII command, followed by CR or NL

	[length=1026, 1024 data bytes, checksum]
	Binary A:000000 N:000400 OK
	Binary payload, length includes 2 checksum bytes

	binary
	
	ASCII command

	[length=1026, 1024 data bytes, checksum]
	Binary A:000400 N:000400 OK
	Second portion of binary payload

	binary
	
	ASCII command

	[length=1026, 1024 data bytes, checksum]
	Binary A:000800 N:000400 OK
	Third portion of binary payload

	dload 7000 0
	0101 dload 7000 0
	Transfer binary command load to absolute address 7000 (hex), 3 bytes per word at major frame 2


4.3. Command List

This section lists the HET/SIT common commands, the instrument-specific commands, and the table load addresses.  All commands are case-sensitive [THIS MAY CHANGE].  All numeric arguments must be supplied in hexadecimal.  A missing argument or a non-numeric argument will be interpreted as the number zero.  

	Common Command
	Description

	tmode N
	Set telemetry mode.  N=0…5.  See description above under Telemetry System.

	modw A N
	Modify word at address A to value N. 

	peekw A
	Examine word at address A.

	binary
	Receive binary command load package. Note that this command is generated automatically by SEP Central when a HET-BINARY package is received.

	immed N
	Immediate command execution mode on (1) or off (0).  Default for flight: immed off (0).  

	gwrite R N
	Write value N to G-bus register R. [THIS MAY DISAPPEAR]

	load A T
	Transfer binary command load to address A using load method T (0=W24, 1=B, 2=W16).  The number of bytes transferred is equal to the maximum relative address written since the last load or loadn command.  This command is always executed immediately, and not delayed until the next major frame. The “dload” version of this command is to be used for delayed execution.

	dload A T
	Same as load, except execution of the command is delayed until the next major frame. The “dload” version should be used to replace a table while the instrument is operational, to avoid corrupted major frames processed partially with the new table.  The “load” version should be used for initial table loads to avoid overrunning the table buffer.

	loadn N A T
	Transfer N bytes from binary command load staging area to address A using load method T (0=W24, 1=B, 2=W16).

	loadat A
	Set relative address to A for next binary command load.  A is a byte number starting from zero within the current table.

	cgate N
	Turn clock gating on (1) or off (0).


	HET Command
	Description

	cmdstr N S
	Command PHASIC N to string S.  N=0, 1.  S is 108 hex bytes long, representing left-justified 846-bit bit string.

	dump N
	Return contents of PHASIC N (value is sent in ASCII to serial port).

	testp P A B
	Write 14-bit period, 9-bit DAC A and 9-bit DAC B values to test pulser registers.  The 9th bit of each DAC value is written to the respective DAC range bit.  This command stops the automatic background test pulser algorithm.  To resume automatic test pulser control, use “testp auto” command.

	testp auto
	Begin automatic background test pulser control algorithm (default).  This command is used after a “testp” command has been sent to set manual values.

	scopesel N V
	Write 9-bit value V to scope select bits, PHASIC N

	presel N V
	Write 5-bit value V to preamp output mux select bits, PHASIC N

	tpfbsel N P V
	Test enable, test select, feedback select, PHASIC N (0-1), PHA P(0-15), value V (9 bits)

	inresel N P V
	Input resistor, input dac, PHASIC N (0-1), PHA P(0-15), value V (16 bits)

	hgthrsel N P V
	High gain threshold, PHASIC N (0-1), PHA P(0-15), value V (10 bits)

	lgthrsel N P V
	Low gain threshold, PHASIC N (0-1), PHA P(0-15), value V (10 bits)

	phacont N P V
	PHA control, PHASIC N (0-1), PHA P(0-15), value V (4 bits)

	lgorsel N X V
	rndn-gor-X L enable, X=0,1,2, PHASIC N (0-1), value V (16 bits)

	hgorsel N X V
	rndn-gor-X H enable, X=0,1,2 PHASIC N (0-1), value V (16 bits)

	setdac V
	Set housekeeping dac to value V

	simevent N
	Inject simulated events into processing system for N major frames. Event values are taken from loadable table. On each major frame, one pass is made through the table.  Note that external event interrupts are still required to drive simulated event processing, but the actual event contents are discarded and replaced by values read from the table.  Issue “simevent 0” to resume normal external event processing.

	setindacs
	Set all preamp leakage current balancing dacs (indac).  This command is not normally needed because the balancing algorithm is run at startup.


	SIT Command
	Description

	hvenable N
	Enable high voltage (N=0,1)

	eonly N
	Control eonly bit (N=0,1)

	hvlevel V
	Set 8-bit HV level

	toferror N
	TOF error events (N=0,1)

	limhi V
	Set LIMHI to 8-bit value

	junk N
	Store junk events (N=0,1)


The addresses and sizes of the HET and SIT tables are set forth below.  Each table has two addresses and sizes associated with it.  The first address and size (in columns 1 and 2 below) represents the working location of the table in flight.  This address is used in the “load” command, after new table contents have been uploaded, to copy the table to its working location and activate the new table.  The accompanying size is the number of 24-bit words of memory occupied by the table in its working form.  This is generally equal to the number of table entries, because for ease of access tables are organized in memory with one entry per word.  

The second address and size, listed as “packed source address” and “packed size” (in columns 3 and 4 below) represents the original location of the packed (i.e., compressed) version of the table within the flight software load module.  These compressed tables are stored with the flight code in SEP Central EEPROM and uploaded to the instrument flight computer by SEP Central during the initial boot sequence.  The packed address is never used with a “load” command to HET or SIT.  The packed tables at these addresses are unpacked and copied to their working locations (column 1) during flight software initialization.  After they are unpacked, the packed images are discarded and overwritten with other data.  Accordingly, a table load to the “packed” address would be disastrous.  However, the “packed” addresses are used when the default contents of a table in SEP Central EEPROM need to be replaced.  For this procedure, the new table contents are compressed by GSE software, and the packed contents are sent to SEP Central by TBD commands.  The packed source address is the relative address in words from the start of the HET or SIT instrument code in SEP Central EEPROM and needs to be communicated to SEP Central by TBD commands along with the command load.  The packed size is the number of words occupied by the packed image, including the three-word packed table header and any bytes necessary to pad out the last word.  

	HET Table Address (hex)
	Size in Words (hex)
	Packed Source Address (hex)
	Packed Size in Words (hex)
	Description

	18000
	4000
	
	
	Software counters (128 x 128)

	1C000
	1000
	
	
	Particle type (64 x 64)

	1D000
	20
	
	
	Addrtab (16x2) 

	1D020
	10
	
	
	Offsetch (8 x 2)

	1D030
	10
	
	
	C-Delta E-Log GnFctr (8 x 2)

	1D040
	10
	
	
	gfctrnum (8 x 2)

	1D050
	2
	
	
	C-Resid E-Log H2 GnFctr (2)

	1D052
	200
	
	
	C-Delta E-Log 2

	1D252
	200
	
	
	C-Resid E-Log 2

	1D452
	B0
	
	
	PHASIC default fields (88 x 2)

	1D502
	1000
	
	
	Simulated event list


	SIT Table Address (hex)
	Size in Words (hex)
	Packed Source Address (hex)
	Packed Size in Words (hex)
	Description

	7000
	800
	
	
	SSDHI

	7800
	800
	
	
	SSDLO

	8000
	4000
	
	
	BOX_ARRAY

	C000
	200
	
	
	TOFTAB


5. Flight Telemetry System

The HET and SIT flight telemetry system is based on a generalized table-driven model, allowing it to support the normal mission telemetry format as well as a variety of alternative formats, including accelerated data mode and expanded flight telemetry mode.

The flight telemetry data is packetized.  Packet formats are described in Reference [N].  Packets are fixed length, 272 bytes (11 byte header and 261-byte payload).  The major frame interval is one minute, and the minor frame interval is one second.  In normal flight operations, in each major frame, HET is allocated six science packets, one housekeeping packet, and one beacon packet.  SIT is allocated 12 science packets, one housekeeping packet, and one beacon packet.  These packets are transmitted to the SEP Central computer according to an agreed-upon schedule.  In each minor frame, SEP Central opens a 200-millisecond interval during which telemetry data can be transmitted over the designated serial line.  HET windows occur during every third minor frame starting with the first minor frame after the major frame interrupt (frame numbers 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54 and 57).  SIT windows occur in every third minor frame starting with the second minor frame after the major frame interrupt (frame numbers 1, 4, etc.)  By convention, a complete packet is transmitted during every window, taking about 50 milliseconds.  It will be seen that there are more windows than packets.  By convention, HET and SIT send a special null packet in each unused window.

However, certain non-flight telemetry modes can be envisioned.  For example, during calibration and testing, it is desirable for HET to transmit more telemetry than it is allocated in flight.  One possibility is simply to accelerate the major and minor frame pulses.  However, this still wastes bandwidth because there could be unused minor frames and unused window time in each minor frame.  A better solution is to transmit more telemetry in each minor frame, and transmit during more minor frame windows.  Moreover, HET or SIT may want to take advantage of any additional telemetry bandwith available during calibration by sending a different sequence of packets rather than the default flight telemetry sequence, or define new packets containing different data.  Further flexibility is desirable in case additional telemetry bandwidth becomes available during flight because of instrument failure.

The flight telemetry system is designed to provide all the necessary flexibility with a fairly small set of parameters.  The telemetry system is capable of allotting any amount of telemetry bandwith to the instrument, and formatting and transmitting a variety of predefined packet types.  There are at least three ways to give HET additional bandwidth: (1) remove the eight-packet limitation in a major frame, allowing HET to transmit as many packets as desired; (2) remove the every-third-frame limitation, allowing HET to transmit in every minor frame; and (3) expand the transmission window in each minor frame from one packet to potentially the whole second.  The flight telemetry system can accommodate all three of these axes of expansion.  SIT is similarly configurable in all three ways.

The operation of the flight telemetry system is based on a set of four parameters: (1) the minor frame interval, (2) the number of packets per minor frame, (3) the number of packets per major frame, and (4) the defined packet sequence.  A single telemetry mode byte is used to refer to various combinations of these parameters that are defined on-board, and there are certain flags and options that may be used to further refine the telemetry format.  Descriptions of the parameters follow.

Minor frame interval.  The minor frame interval defines how often minor frames appear in the telemetry (in seconds).  In flight operation, this number is 3 (one minor frame every 3 seconds).  It can be set to a lower value to issue a minor frame more often.  For example, during HET integration and testing, SEP Central may be able to receive a packet from HET during every minor frame rather than every third.  Setting the minor frame interval to 1 accomplishes this.  Another variation could occur if one or more instruments fail in flight.  In that case, HET could occupy the failed instrument’s bandwidth.  To accommodate all the possibilities, the minor frame interval can be set to the special value of zero.  In this case, HET uses a table with 60 entries to determine whether to send a packet in each respective minor frame window.  The minor frame interval must be a number between zero and 3, with zero being a special value indicating a table lookup.

An additional flag is used in connection with the every-other and every-third frame intervals.  This flag defines whether the sequence begins on frame 0 or 1 (for divide-by-two) or frame 0, 1, or 2 (for divide-by-three).  For example, in flight, HET transmits on frames 0, 3, 6, etc. and SIT transmits on frames 1, 4, 7, etc.  The flag is set appropriately for HET or SIT, but the rest of the telemetry system is common to the two instruments.  

Number of packets per minor frame.  HET normally sends a single packet in each minor frame.  The packet will either be one of the eight defined packet types or a null packet.  However, this process only uses approximately 52 milliseconds of each 1-second minor interval (assuming 57K baud operation). To use more of the available time, the number of packets per minor frame can be set to a value greater than 1.  When HET is connected to SEP Central, the number of packets per minor frame cannot be greater than 4, since SEP Central only listens for 200 milliseconds.  However, during HET standalone operation, there is, in theory, time to send 19 full packets during each minor frame.  However, due to software space limitations, the number of packets per minor frame must be between 1 and 9.  At 9 packets per minor frame, and one minor frame per second, there is enough bandwidth to transmit 765 event words per second.

Number of packets per major frame.  Even though HET is allotted a transmission opportunity in every third minor frame, it is ordinarily not permitted to transmit a packet at every one of these opportunities, because it is limited by its telemetry allocation.  By convention, when HET has transmitted all of its permitted telemetry allocation, it sends null packets (which have a special predefined APID) to SEP Central in any additional HET minor frames until the start of the next major frame.  The number of packets per major frame defines the point in the major frame at which the instrument switches from sending HET data to sending null packets.  If the defined packet sequence runs out while there are more HET packets to transmit in a major frame, the defined packet sequence will be repeated as necessary to fill the desired telemetry allocation.  

Defined packet sequence.  The defined packet sequence defines the packet types that are sent in each major frame.  There are 20 entries but only a maximum of 10 packets can be formatted in one sequence (the reason for the excess will become apparent later on).  The entries in the defined packet sequence table are positive integers 1-N.  A zero entry in the table terminates the packet sequence.  The integers roughly correspond to the APIDs assigned to the instrument.  In the case of HET, the entries are 1-7 for HET packets A-G.  Thus, for flight, the defined packet sequence is 1, 2, 3, 3, 3, 5, 6, corresponding to packets A, B, C, C, C, D, F, G.  Any other sequence of up to eight packets can be defined by changing the values in this table.   The packets are filled in from current data at the start of each major frame and transmitted in the given order.  A zero entry in the table terminates the defined packet sequence. If the number of packets per major frame (see above) exceeds the number of entries in the table, the packet formatter will run again, and fill in a new set of packets.  Whether these packets contain new data will depend upon the way the data collection and packet formatting is handled.

There are three flags that may be combined with any entry in the defined packet sequence.  These flags are TM_ONCE, TM_IN, and TM_OUT.  

TM_ONCE, when added to a given entry, causes that particular packet to be formatted and transmitted only once per major frame.  If the defined packet sequence is repeated, this packet will be skipped until the next major frame.  This can be used, for example, to transmit a beacon packet once per major frame even though the packet sequence containing the beacon packet may be repeated during that major frame.

TM_IN, when added to a given entry, causes that entry to be transmitted only in major frames matching a specified bit mask.  The bit mask is also added in to the entry in the table.  Possibilities for the bit mask are every 2, 4, 8, 16, 32, 64, 128, or 256 major frames.  

TM_OUT, when added to a given entry, causes that entry to be skipped in major frames matching a specified bit mask.  The bit mask is also added in to the entry in the table.  Refer to the bit masks and usage described in connection with TM_IN, above.

The TM_IN and TM_OUT flags are intended to be used together, which effectively causes one packet to be substituted for another in the designated major frames.  In this way, for example, HET can issue a table readout packet every TBD major frames in place of a science packet. 

Telemetry mode.  The telemetry mode is a single byte that determines the settings of all five telemetry control parameters.  A mode switch is performed only on major frame boundaries.  When a new mode is commanded, the telemetry control parameters are copied from a set of hard-coded values associated with the mode.  The hard-coded values associated with each mode are set forth in the following table.

	Mode
	Minor Frame Interval
	Pkts per Minor Frame
	Pkts per Major Frame
	Defined Packet Sequence
	Description

	0
	3
	1
	8
	G, F, A, B, C, C, C (E), D
	Flight telemetry (E replaces C every 64 frames)

	1
	1
	1
	60
	G, F, A, B, C, C, C, D, 52*J
	HET-only nonflight

	2
	1
	4
	240
	A, B, C, C, C, D,  54*J
	Accelerator (4 packets per second)

	3
	3
	1
	8
	G, F, A, B, C, D, J, J
	Spare flight mode (sequence commandable)

	4
	0
	1
	60
	G, F, A, B, C, C, C, D
	Contingency mode to allow HET to occupy additional minor frame ticks (use minor frame table)

	5
	TBD
	TBD
	TBD
	L
	Telemetry test mode


Byte ordering  conventions.  The telemetry system transmits multiple-byte integers in “little-endian” order.  For 16-bit values, the least-significant byte is transmitted first, and the most-significant byte is transmitted second.  For 24-bit values, the byte order is least, middle, then most-significant byte.  

6. Software Status Indicators

The flight software maintains a number of counters, status flags, error indicators, and parameters as part of its operation.  Certain of these values are placed in the telemetry in each major frame as a check on flight software operation.  The tables below list each of the software telemetry points for HET and SIT.

	HET Variable
	Location
	Description

	CoincidenceCnt
	Pkt 590, bytes 20-21
	Counts every event interrupt except stop_ev (g@8 bit 0 is set) and no_event (g@9 bit 8 is set).  Cleared every minute.

	lastcmd
	Pkt 590, byte 44
	Highest command sequence number reached in major frame (equal to number of commands received that pass parsing).  Resets from zero every minute.

	CmdErrBits
	Pkt 591, bytes 46-47
	Bit set when command parsed correctly but did not execute.  Bit number corresponds to sequence number associated with command when received during previous major frame.  Whenever any bit is set in this word, there will also be a software error flag set in bit 6 of Errflags (see below).

	IdleCnt
	Pkt 591, bytes 48-49
	Counts every pass through the background loop, read out and cleared every minute. Provides a “livetime” check, since more time spent in interrupt and event processing will decrease this count.  For this check to work, clock gating needs to be off (cgate 0).  

	Errflags
	Pkt 598, bytes 29-30
	Bit set corresponds to an error encountered during previous major frame time.  Cleared every minute. 

Bit 0: Receive queue full

Bit 1: Transmit queue full

Bit 2: Command queue full

Bit 3: Command buffer overflow

Bit 4: Command handler timeout

Bit 5: Command syntax error (command rejected)

Bit 6: Command processing error (CmdErrBit set)

Bit 7: Callback timer error

Bit 8: ADC timed out

Bit 9: Queuing error, queue reset to empty state

	swVer
	Pkt 598, bytes 31-32
	Software version tag.  LSB (byte 31) is day of month, MSB (byte 32) is month in which version was created.

	Err_event
	Pkt 598, bytes 33-34
	Event read from hardware but no token bit was set. Event was counted in CoincidenceCnt but not processed.

	No_event
	Pkt 598, bytes 35-36
	Event interrupt handled but no_event bit was set to 1 (g@9 bit 8).  Event not counted in CoincidenceCnt.

	Lost_event
	Pkt 598, bytes 37-38
	Event could not fit in raw event queue. The raw event queue is only used in laboratory testing.  Data in raw event queue is used to fill packet 598.  If this counter still exists in the flight version, it will increment at high data rates because the raw event queue is never emptied.  However, it is not an error and the events are also processed normally.

	tmMajorFrame
	Pkt 598, bytes 39-40
	Major frame number. This is necessary in order to correlate housekeeping packets with science packets. Each science packet has the major frame number in the HET header following the CCSDS header.  The housekeeping packet is merged into the SEP Central housekeeping and does not have a HET header.

	checksum_csum
	Pkt 598, bytes 41-43
	Three-byte checksum of entire table area.  The table checksum is computed on the ground during the flight software build process, and should match this computed checksum.  The checksum is computed one word at a time in the background idle loop.  This may take some time if clock gating is enabled (cgate 1). Table entries are added using a 24-bit sum, ignoring carries. Once the entire table area has been added up, the result is telemetered and the calculation is repeated.


7. Building HET Flight Software From Sources

This section describes how to build the HET flight software executable images from the source code files.  

There are two ways in which the build process may be accomplished.  The first is within the Microsoft Visual Studio build environment.  Workspace (.dsw) and project (.dsp) files are provided that set up the source files, output files, and dependencies.  The build process is automated, and only the components that have changed (based on modification dates) are built.  The second build method is to use DOS command lines, either typing the command lines one by one in a CMD window or using a batch file.  A batch file (.cmd) is provided.

Either build method requires (1) the source files and (2) the custom build utility programs.  The source files are ordinary text files that may be read and modified by a text editor program (Visual Studio has a built-in editor).  They are written in the HET-SIT variant of the P24 assembly language.  The required custom build utility programs are the preassembler, the p24 assembler, and the tableizer.  Each of these programs is written in C and may be rebuilt from its own source code if necessary.

7.1. File Naming Conventions

The following table lists the various file types found in the HET flight software system.

	Extension
	Description
	Readable?
	Program

	.111
	Asm24 secondary file
	Yes
	asm24

	.bin
	Binary load contents (actually an ascii file)
	Yes
	asm24

	.chk
	Asm24 stack checking file
	Yes
	asm24

	.cmd
	DOS command batch file
	Yes
	command

	.dsp
	Visual Studio project file
	No
	VC++ 

	.dsw
	Visual Studio workspace file
	No
	VC++

	.hex
	Table source file
	Yes
	tableize

	.lin
	Asm24 line number file
	Yes
	asm24

	.log
	Text file
	Yes
	tableize

	.lst
	Asm24 listing file with address information
	Yes
	asm24

	.ncb
	Visual Studio secondary file
	No
	VC++

	.opt
	Visual Studio secondary file
	No
	VC++

	.p24
	P24 assembler source code
	Yes
	asm24

	.plg
	Visual Studio secondary file
	No
	VC++

	.pre
	Preassembler source directives
	Yes
	pre24

	.sym
	Asm24 symbol file
	Yes
	asm24

	.txt
	Text file
	Yes
	


7.2. Directory Structure


This document and the various build methods assume that the software is organized into the proper directory structure.  The flight software is organized as a root or base directory and three subdirectories for the engineering model, flight model 1, and flight model 2, respectively.  The directory structure is depicted in the following figure.


Generally, the root directory is the unique flight software release folder.  Each flight software release version is delivered in a folder that is keyed to the date of the software revision.  For example, as of this writing the latest HET flight software release is FSW20040923.  There is a folder with this name, whose contents are organized as depicted in the figure above, associated with this flight software release.  This folder and all its contents should be copied intact to a directory on the computer where the build will take place.

In addition to the flight software delivery, there must be a separate directory for the executable utility programs.  These programs generally do not change with software releases, so they should not be placed in a flight software directory.  Instead, they should be placed in a separate subdirectory at the same level as the flight software root directory.

In order to use the command lines for rebuilding the software, the system search path must be set up to search the directory containing the executable utility programs.  

An example directory structure is given below.

C:\HET_FSW


C:\HET_FSW\BIN


C:\HET_FSW\FSW20040923



C:\HET_FSW\FSW20040923\EM



C:\HET_FSW\FSW20040923\FM1



C:\HET_FSW\FSW20040923\FM2

7.3. Source Files

The following table lists the source files that are required to build the HET flight software.  The files fall into four categories: common files (i.e., those used in all bootable images); EM files (i.e., those used only in building the engineering model bootable image); FM1 files (i.e., those used only in building the flight model 1 bootable image); and FM2 files (i.e., those used only in building the flight model 2 bootable image).

	Common Files – These files reside in the root directory

	Bootvec.p24
	Boot vector and low memory data

	Start.p24
	Startup code

	Intserv.p24
	Interrupt service routines

	Command.p24
	General command handling routines

	Telem.p24
	General telemetry formatting routines

	HETfunc.p24
	HET-specific functions, including HET commands

	HETtelem.p24
	HET-specific telemetry packet formatting

	Asic.p24
	Control of PHASIC chips

	Tomutil.p24
	General utility routines

	Queue.p24
	General message queuing routines

	INIT.p24
	Particle processing initializations

	RDCHTAB.p24
	Initialize channel table for particle processing

	PHPROC.p24
	First cut particle processing -- place in queues

	H1EVNTS.p24
	Process H1-only events

	STPEVNTS.p24
	Process stopping events

	PENEVNTS.p24
	Process penetrating events

	UTIL.p24
	Particle processing utility routines

	PROC.p24
	Offset correction, other processing functions

	CATEGORY.p24
	Particle category lookup

	BEACONPROC.p24
	Assemble beacon packet contents

	Bss.p24
	Uninitialized memory for buffers and variables

	Engineering Model (EM) Files – these files reside in subdirectory .\EM

	fsw_em.pre
	Preassembler control file

	HET_Tables.hex
	Table source file

	Flight Model 1 (FM1) Files – these files reside in subdirectory .\FM1

	fsw1.pre
	Preassembler control file

	HET1_Tables.hex
	Table source file

	HET1_Events.hex
	Simulated event list table source file

	Flight Model 2 (FM2) Files – these files reside in subdirectory .\FM2

	fsw2.pre
	Preassembler control file

	HET2_Tables.hex
	Table source file


7.4. Utility Programs

The following are the utility programs used to build the HET flight software.  Asm24 is built from a single C source file using the Borland C compiler.  The other two programs are built using Microsoft Visual C++ version 6.0.  Each has a workspace and project file.

7.4.1. Asm24 

Asm24 translates p24 mnemonics into binary code.  The mnemonics are those listed in the CPU24 manual version 6, including “or”.  General line syntax is 

[label:]  [mnemonic]  [value]  [; comment]

In addition to the 32 opcode mnemonics, certain assembler-specific mnemonics are defined:  

dw
n
; assemble a single 24-bit word whose value is n

ds
n 
; assemble n x 24-bit words, all zeroes

org
n
; assemble starting at address n

A label, if present, must be followed by a colon.  A mnemonic, if present, may follow directly after the colon or be separated by spaces and tabs.  Certain mnemonics require values.  Specifically, jump, jnc, jz, call, ldi, dw, ds, and org all require a value.  A comment, if present, is preceded by a semicolon which may itself be preceded by white space.  

A label may be supplied as the value for any instruction, in which case the assembler will calculate its numeric value.  Other values may be specified in decimal or hex following the usual convention (0xN = hex number N).  The assembler will perform certain arithmetic operations on values.  Thus,

ldi
(9*5)-4

jump
target+1

dw
SIZE+3

are all valid instructions. 

The assembler also recognizes certain directives:

#define  symbol  value
; define a symbol

#expand on | off

; turn on or off code expansion

#stack_check on | off

; turn on or off simulator stack checking

The assembler accepts one source file and compiles it into a binary image.  It does not require a separate link step.  Unless an org directive changes the assembly address, code is assembled starting at address zero and proceeding through consecutive addresses.  (Note that no code is permitted at address zero in the cpu24 chip, so either the first word will not be written or the org should be used to set the address to 1.)

The command line is:

asm24 basefile

The base file name has no extension; the assembler adds “.p24”.  The assembler creates a number of output files, each constructed using the base file name with unique extensions.  It will overwrite any files that happen to exist in the current directory. 

basefile.111

; don’t know

basefile.bin

; binary image file

basefile.chk

; stack checking file

basefile.lin

; correspondence between source file and listing file

basefile.lst

; listing file (combined source, assembly, and address)

basefile.sym

; symbol names and corresponding values

The two most important of these files are the bin file, containing the binary image, and the lst file, containing the combined source, assembly, and symbolic address information.  

A binary image file consists of one or more segments.  A segment consists of a header line and a variable number of data lines.  The header line is the first line of the segment.  It consists of two hex numbers: the base address and the number of words to follow at this address.  The following N data lines are 24-bit hex values, where N is the second word on the header line.  Another segment may follow immediately after the end of the previous segment, beginning with its own header line.  The base address for a segment is determined by any org directive that may appear in the source file.  If a source segment consists of nothing but “ds” mnemonics, then no output segment is created.

The executable file is asm24.exe.  The source file is asm24.c, dated 4/26/2003.  This is Phong Le’s program, version 7.  It is not currently capable of being rebuilt from source using Visual C++.

7.4.2. Pre24

The preassembler does one trick that should have been included in the assembler. it combines separate source files into one big source file for input into asm24.  A pre24 input file (*.pre) consists of assembler source code and #include directives.  The output file consists of the input base file name with a “.p24” extension.  A #include directive causes the preassembler to write the contents of the included file (which follows the “#include” on the same line) to the output file.  Any other lines are copied straight to the output file.  The assembler is automatically invoked, unless the word “noasm” appears on the pre24 command line (i.e., pre24 filename.pre noasm).  The HET flight software uses one .pre file, which consists of #include lines specifying each source file in turn.  

Executable file is pre24.exe.  Source file is pre24.cpp.  Version 1, T. Nolan 11/2/2002.

7.4.3. Tableize

Tableize appends compressed tables to the code image for uploading to the flight instrument.  

Tableize requires a binary image file (the output of asm24) and a table source file (*.hex).  The tables are compressed according to directives in the table source file, and the compressed image is appended to the binary image file.  The output is a new binary image file bearing the same name as the original, which has the tables attached.

A table upload file is a readable ASCII file consisting of four kinds of lines: introducers, addresses, table contents, and comments.  They are described below.

An introducer line consists of the word “HETBINARY” or “SITBINARY” on a line by itself, with no spaces or other characters before or after it.  The purpose of having two different introducers is so that tables cannot be uploaded to the wrong instrument inadvertently.

An address line follows immediately after an introducer.  It contains three numbers, separated by spaces.  The format for numbers obeys C conventions.  That is, each number is assumed to be decimal, unless it begins with “0x,” in which case it is assumed to be hexadecimal.  The first number is the address at which the table is to be loaded.  This address is an absolute address in the flight software address space. The addresses of the major tables in the SIT and HET flight software are found in the discussion above.  The second number is the number of table entries to follow.  This normally corresponds to the size of the table. If the second number is zero, tableize will calculate the size of the table automatically (it will run until it finds the next introducer).  The third number is the load type, which can be 0, 1, 2, 4, 5, or 6.  Load type 0 treats each table entry as a 24-bit word. All three bytes of each word are transmitted to the flight software, then recombined into words and stored at successive address locations.  Load type 1 treats each table entry as an 8-bit value.  Only a single byte is transmitted to the flight software, which stores successive bytes at successive address locations, filling the most-significant 16 bits of each word with zeros.  If the table entry in the file is larger than can fit in one byte, it is truncated to 8 bits. Load type 2 treats each table entry as a 16-bit value.  Two bytes are transmitted to the flight software, which combines the two bytes into a 16-bit word, storing successive words at successive address locations, filling the most-significant 8 bits of each word with zeros.  

Load types 4, 5, and 6 apply bytewise run-length compression.  Run-length compression shortens a string of consecutive identical bytes by converting it to two bytes: a count, and a value.  This compression works well on some kinds of files, but if the contents of the file are random the “compressed” file will actually be longer (because a single byte followed by a different value is converted to two bytes).  The same compression is used in load types 4, 5 and 6.  The difference is that type 4 causes the uncompressed bytes to appear in the least-significant bytes of successive words; type 5 causes the uncompressed bytes to appear in the middle bytes of successive words, and type 6 causes the uncompressed bytes to appear in the most-significant bytes of successive words.  In this manner, an overlaid table can be built up in memory from three compressed source files.

A table contents line consists of one or more numbers separated by commas, spaces, or tabs.  There must be the same number of table entries following the address line as specified in the second number of the address line (i.e., the table size).  However, the table entries can be spread out over any number of lines.  For example, each table entry could appear on a separate line, or all the table entries could appear on the same line (but lines are limited to 512 characters in total length).  As before, number formats obey C conventions.  They must begin with a digit, a minus sign, or a “0x.” Any other character appearing where a number ought to be ends that line (effectively acting as an inline comment).

A comment line is any line whose first character (other than spaces, tabs, or commas) is not a digit or a minus sign.  Comment lines can appear anywhere in the table upload file except between an introducer and the following address line.  The comment line immediately preceding the introducer is special – it is a shorthand description of the table that can be used by the upload software to inform the user of the table that is about to be uploaded.  Other comment lines appearing before the introducer are ignored, and any comment lines appearing in the table contents area are skipped until a line beginning with a numeric value is found.

Multiple table uploads can appear in one file.  Each table upload begins with an introducer and address line, and is followed by sufficient table contents lines to fill up the table. Following the table contents (and any optional comments), another introducer may begin a second table upload, and so on.

An example follows.

	This table upload file contains two uploads.

	First is a sample table containing 13 entries, where each entry is no larger than 16 bits.

	HETBINARY

	0x1f000 13 2

	0, 10, 20, 50, 100, 200, 500, 1000      first 8 entries

	2000, 5000, 10000, 20000, 50000      next 5 entries

	Second is a sample table containing 4 entries, 24 bits each

	HETBINARY

	0x1f020 4 0

	-1

	-1

	0x55aa55

	-1


The executable file is tableize.exe.  Source files are tableize.cpp, compress.cpp, and upload.cpp.  Version 3.0, T. Nolan, 8/15/2004.

7.5. Command Lines to Rebuild Flight Software

This section sets forth the command lines to rebuild the flight software from sources.  They assume that the source files organized in directories as described above.  They also assume that the \bin directory has been added to the search path so the utility programs can be found by the command interpreter.  It is assumed that the command interpreter starts in the root directory for the version of the flight software that needs to be rebuilt (this will generally require a cd command).

FSW20040923> cd em

FSW20040923\EM> pre24 fsw_em

FSW20040923\EM> tableize fsw_em HET_Tables.hex

FSW20040923\EM> copy fsw_em.bin ..

FSW20040923\EM> cd ..\FM1

FSW20040923\FM1> pre24 fsw1

FSW20040923\FM1> tableize fsw1 HET1_Tables.hex HET1_Events.hex

FSW20040923\FM1> copy fsw1.bin ..

FSW20040923\FM1> cd ..\FM2

FSW20040923\FM2> pre24 fsw2

FSW20040923\FM2> tableize fsw2 HET2_Tables.hex

FSW20040923\FM2> copy fsw2.bin ..

FSW20040923\FM2> cd ..

FSW20040923>

At this point, three binary image files have been created and copied to the root directory: fsw_em.bin, fsw1.bin, and fsw2.bin.  Note that as described above, these files are actually readable ascii, and contain instructions to the various loader programs.

A batch command file, rebuild.cmd, is provided to automate this process.  The batch file does not require that the utility executables be in the search path.  Instead, it contains a symbolic reference to the directory containing the executables.  As a result, you need to edit the rebuild.cmd file and change this symbolic reference to point to the directory on your host computer where the utilities are stored.  Once that is accomplished, the rebuild command file can be executed in one of three different ways:  (1) locate rebuild.cmd in the flight software root directory using Windows Explorer and double-click on it; (2) open a DOS command window, set the current directory to the the flight software root directory, and invoke the command by typing one of the following lines:

> rebuild all

> rebuild EM

> rebuild FM1

> rebuild FM2

or (3) create a shortcut in which the target is “rebuild.cmd” with one of the command line options listed above (all, EM, FM1, FM2) appended on the end.

7.6. Using the Visual Studio Environment to Build the Flight Software

The Microsoft Visual Studio (a component of Visual C++) provides a customizable user environment for editing and building any program, not just C programs.  A workspace (.dsw) file and three project (.dsp) files have been created to organize and build the HET flight software.  Visual Studio works like a “make” utility in that it pays attention to the modification date of the files under its control and only builds those portions of the build tree that need to be built.

In order to port the HET flight software workspace to a new computer, there must be one customization performed.  This customization will tell Visual Studio where to find the HET build utility programs pre24.exe, asm24.exe, and tableize.exe.  As described above, you should create a separate directory to hold these three programs, for example C:\HET_FSW\BIN.  Assuming you have done this, open Visual Studio, select Tools, Options from the menu.  In the Options dialog, select the Directories tab.  In the box labeled “Show directories for” select “Executable files”.  Then click on the “new” icon from the mini-toolbar above the list, and either type the name of the directory containing the utility programs or use the browse button to point to the directory graphically.  Save these changes.  This customization needs to be performed only once.  Visual Studio will remember the directory list the next time it is started.

After you have made the directory customization described above, you can copy the entire HET flight software source directory tree to the host computer and open the fsw.dsw file either by double-clicking on it in Windows Explorer or by selecting “File” and “Open workspace” from the Visual Studio main menu.  

Three projects appear in the left-hand pane.  Each one contains a complete list of the common flight software files.  Double-clicking on one of these brings up the corresponding source file in the editor.  Since these are common files, it does not matter which project is open when you click on the file.  Changing it in one project changes it in all projects.  In the “Extras” folder under each project are additional files, including files unique to that project.  This is where the table file for the EM, FM1, and FM2 can be located.  

Visual Studio ordinarily builds one project at a time.  The active project is highlighted in bold in the left-hand pane.  To select a project to build, either right-click on the project name and select “Set as active project” or select “Set active project” from the “Project” menu.  Once a project is active, it can be built by pressing the F7 function key or selecting “Build” or “Rebuild All” from the “Build” menu.  Alternatively, all projects can be built at once by selecting “Batch build” from the “Build” menu and clicking on “Rebuild all.”  The new binary image files can be found under the respective EM, FM1, and FM2 directories.  

The instructions to rebuild the HET flight software from sources are contained in the project settings.  These settings do not have to be modified because they travel with the workspace and project files.  However, for completeness, and to allow the project to be reconstructed from scratch, here are the project settings that are used.

	File
	Dependencies
	Outputs
	Commands

	fsw_em.pre
	asic.p24
beaconproc.p24
bootvec.p24
bss.p24
category.p24
command.p24
h1evnts.p24
hetfunc.p24
hettelem.p24
init.p24
intserv.p24
penevnts.p24
phproc.p24
proc.p24
queue.p24
rdchtab.p24
start.p24
stpevnts.p24
telem.p24
tomutil.p24
util.p24
	fsw_em.p24
	pre24 fsw_em noasm

	fsw_em.p24
	fsw_em.pre
	fsw_base.bin
	asm24 fsw_em
del fsw_base.bin
ren fsw_em.bin fsw_base.bin
copy fsw_em.sym fsw_base.sym

	HET_Tables.hex
	fsw_base.bin
	fsw_em.bin
	tableize fsw_base HET_Tables.hex -sprog_end
     -ofsw_em.bin

	fsw1.pre
	asic.p24
beaconproc.p24
bootvec.p24
bss.p24
category.p24
command.p24
h1evnts.p24
hetfunc.p24
hettelem.p24
init.p24
intserv.p24
penevnts.p24
phproc.p24
proc.p24
queue.p24
rdchtab.p24
start.p24
stpevnts.p24
telem.p24
tomutil.p24
util.p24
	fsw1.p24
	pre24 fsw1 noasm

	fsw1.p24
	fsw1.pre
	fsw_base.bin
	asm24 fsw1
del fsw_base.bin
ren fsw1.bin fsw_base.bin
copy fsw1.sym fsw_base.sym

	HET1_Tables.hex
	fsw_base.bin
	fsw1.bin
	tableize fsw_base HET1_Tables.hex 
     HET1Events.hex
     -sprog_end -ofsw1.bin

	fsw2.pre
	asic.p24
beaconproc.p24
bootvec.p24
bss.p24
category.p24
command.p24
h1evnts.p24
hetfunc.p24
hettelem.p24
init.p24
intserv.p24
penevnts.p24
phproc.p24
proc.p24
queue.p24
rdchtab.p24
start.p24
stpevnts.p24
telem.p24
tomutil.p24
util.p24
	fsw2.p24
	pre24 fsw2 noasm

	fsw2.p24
	fsw2.pre
	fsw_base.bin
	asm24 fsw2
del fsw_base.bin
ren fsw2.bin fsw_base.bin
copy fsw2.sym fsw_base.sym

	HET2_Tables.hex
	fsw_base.bin
	fsw2.bin
	tableize fsw_base HET2_Tables.hex 
     -sprog_end -ofsw2.bin


8. HET Telemetry Packet Format Descriptions
Reference:  STEREO HET TELEMETRY FORMATTING document
Original  August 6, 2002 by D. Reames

Revised  March 10, 2005  by K. Wortman

The telemetry output of the STEREO IMPACT HET telescope contains CCSDS packets in 7 different data formats:

A. Rate packets

B. Status and single PH packets

C. Stopping particle PH packets

D. Penetrating particle PH packets

E. Table status dump

F. Beacon packets

G. Housekeeping data packets

After individual particle pulse height (PH) events are recorded by HET, the onboard processing algorithm identifies particle species and energies and bins the particles in “software rate counters,” as distinguished from hardware counters in the front-end electronics.  The identification of these counters is given in Appendix A.  In addition to binning all the particles, samples of the raw PH events are selected in 8 categories (see Appendix B) for inclusion in the telemetry stream. The format of the PH events themselves is given in B.2.  Note that PH events can vary in length from 2 to 16 bytes (always even).  All rates are log compressed from 24-bit to 16-bit quantities for telemetry according to the algorithm given in section 10.  Quantities longer than one byte are written into the packets least-significant byte first.

The following sections describe the formats of individual packet types.  In normal operation, HET generates 6 primary packets during a one-minute frame; these might be formatted as follows:  1 A, 1 B, 3 Cs and 1 Ds.  E packets are multiplexed out on at a rate that can be selected by command.  In flight, typically, E packets replace a PH packet once every 16 min to produce a complete dump every ~5 days.  F and G packets contribute the HET portions of the SEP beacon and housekeeping data.  Section 8.12 discusses an algorithm for selection of sample PHs to fill the PH packets.

The CCSDS header format is defined in the STEREO MOC to POC Interface Control Document.
8.1. HET APID Assignments

	APID
	Description

	590   (Hex 24E)
	Singles RATE

	591   (Hex 24F)
	Status and Single PHA

	592   (Hex 250)
	Stopping Particle PHA

	593   (Hex 251)
	Penetrating Particle PHA

	594   (Hex 252)
	Table Listing

	595-596  (Hex 253-254)
	Not Used

	597   (Hex (255)
	Tmode=3 Raw Events

	598   (Hex 256) 
	Housekeeping

	599   (Hex 257) 
	Beacon 


8.2.  ‘A’ or Rate packets (ApID: 590 (dec)  24e (hex)): 

Rate packets are formatted as follows:

	Offset
	Bytes
	A-packet contents

	0
	11
	CCSDS header

	11
	1
	HET mode byte

	12
	2
	TBD

	14
	2
	Major frame number

	16
	2
	Livetime

	18
	2
	Trigger rate

	20
	2
	Coincidence rate

	22
	2
	Total number of events (excludes stimulus events)

	24
	2
	N singles queued 

	26
	2
	N stopping events queued

	28
	2
	N penetrating events queued

	30
	2
	N stopping H

	32
	2
	N stopping He

	34
	2
	N stopping heavies

	36
	2
	N penetrating H

	38
	2
	N penetrating He

	40
	2
	N penetrating heavies

	42
	2
	N invalid events – out of sequence (reg and stim events )

	44
	2
	N invalid events – H1i & H1o, but not stimulus events

	46
	2
	N invalid events – inconsistent dE/dx  (reg and stim events)

	48
	2
	N invalid events – H1 not first ph (reg and stim events)

	50
	2
	N stimulus events (all types of stimulus events)

	52
	12
	6 background event bins 0-5

	64
	150
	75 stopping event bins 6-80 

	214
	16
	8 penetrating event bins 81-88

	230
	26
	13 single event bins 89-101

	256
	14
	7 stimulus event bins 102-108

	270
	1
	TBD

	271
	1
	checksum


8.3.  ‘B’ or Status and Single PH Packets (ApID: 591 (dec)  24f (hex)): 

B packets are somewhat of a catchall.  They contain instrument status and health bytes, H1 single PH events, stimulator (STIM) event PHs and a few extra rates.  They are formatted as follows:

	Offset
	Bytes
	B-packet contents

	0
	11
	CCSDS header

	11
	1
	HET mode byte

	12
	2
	TBD

	14
	2
	Major frame number

	16
	28
	14 Single detector rates

	44
	1
	number of commands received in previous major frame

	45
	1
	zero

	46
	2
	command errors (bit N = 1 if command N had an execution error, N=0-15)

	48
	2
	background idle counts (compressed)

	50
	14
	Offsets for current selected channels (h1i logain=0, h1i logain=1, h1o logain=0, h1o logain=1, h2 logain=0, h2 logain=1, h3 logain=0, h3 logain=1...  h6 logain=0, h6 logain=1)

	64
	7
	h1i chip=0 addr, h1o chip=0 addr, h2 chip=1, addr, h2 chip chip =1 addr..h6 chip=1 addr

	71
	3
	Status Bytes (TBD)

	74
	100
	50 sample H1-only PHs

	174
	96
	STIM PH events

	270
	1
	N stimulus events in packet

	271
	1
	Checksum


8.4.  ‘C’ or Stopping-Particle PH Packets (ApID: 592 (dec)  250 (hex)): 

C packets contain PH events for stopping particles.  They are formatted as follows:

	Offset
	Bytes
	C-packet contents

	0
	11
	CCSDS header

	11
	1
	HET mode byte

	12
	2
	TBD

	14
	2
	Major frame number

	16
	2
	N of stopping events

	18
	252
	Stopping event PHs

	270
	1
	TBD

	271
	1
	checksum


Stopping particles produce PHs in from 2 to 5 detectors, so their description contains from 6 to 12 bytes (appendix B).  This means that a packet can contains a maximum of 42 events, but contains at least 21 events if they are available.  Since event lengths are variable, extra space may exist at the end of the PH region that is too small for another event.  Any such bytes following the last PH event must be 0 filled.
8.5.  ‘D’ or Penetrating-Particle PH Packets (ApID: 593 (dec)  251 (hex)): 

D packets contain PH events for penetrating particles.  They are formatted as follows:

	Offset
	Bytes
	D-packet contents

	0
	11
	CCSDS header

	11
	1
	HET mode byte

	12
	2
	TBD

	14
	2
	Major frame number

	16
	2
	N of penetrating events

	18
	252
	0-18 Penetrating event PHs

	270
	1
	TBD

	271
	1
	Checksum


Penetrating particles produce PHs in 6 detectors, so their description contains 14 bytes (appendix B). 

8.6.  ‘E’ or Table Listing Packets (ApID: 594 (dec)  252 (hex)): 

E packets contain a listing of a segment of the table and constant region of the MISC-24 processor’s memory.  They are formatted as follows:

	Offset
	Bytes
	E-packet contents

	0
	11
	CCSDS header

	11
	1
	HET mode byte

	12
	2
	TBD

	14
	2
	Major frame number

	16
	3
	Beginning address

	19
	252
	Data

	271
	1
	Checksum


Generally, “Data” will consist of the next 84 24-bit words of memory beyond the beginning address.  These packets are designed to slowly multiplex the contents of large sections of memory into the telemetry stream.  Typically, one E-packet will be written every 16 major frames (minutes) in place of a PH packet.

8.7.  ‘F’ or Beacon Packets (ApID: 599 (dec)  257 (hex)

Beacon packets transmit HETs share of the SEP beacon packet.

	Offset
	Bytes
	F-packet contents

	0
	11
	CCSDS header

	2
	2
	Electrons 0.7-4 MeV  - sum of sw bins 6-8

	4
	2
	Protons 13-21 MeV – sum of sw bins 9-12

	6
	2
	Protons 21-40 MeV – sum of sw bins 13-18

	8
	2
	Protons 40-100 MeV – sum of sw bins 81-82

	10
	2
	He 13-21 MeV/n – sum of sw bins 24-27

	12
	2
	He 21-40 MeV/n – sum of sw bins 20-22

	14
	2
	He 40-100 MeV/n – sum of sw bins 86-87

	
	2
	C+O 30-52 MeV/n - sum of sw bins  35-39,  42-46

	
	2
	C+O 52-74 MeV/n - sum of sw bins  40-41, 47-48

	
	2
	Fe 52-74 MeV/n - sum of sw bins 73-74

	
	2
	Livetime

	
	2
	Stop. efficiency  (TBD)

	
	2
	Pen. efficiency (TBD)

	
	2
	HET status (TBD)

	270
	1
	TBD

	271
	1
	Checksum


The rate quantities in the beacon data packet are derived by summing software rates described in Appendix A.   Regions in the packet other than the header and defined HET data block are filled with 0. 

8.8.  ‘G’ or Housekeeping Packets (ApID: 598 (dec)  256 (hex))

G packets contain the HET contribution to the housekeeping data packet.  Regions other than those defined are 0 filled.

	Offset
	Bytes
	G-packet contents

	0
	11
	CCSDS header

	11
	1
	ADC Temp 1

	12
	1
	ADC Temp 2

	13
	1
	PHASIC 0 PH channel ID

	14
	1
	PHASIC 0 ADC Preamp 

	15
	2
	PHASIC 0 high gain threshold

	17
	2
	PHASIC 0 low gain threshold

	19
	2
	PHASIC 0 leakage current DAC setting

	21
	1
	PHASIC 1 PH channel ID

	22
	1
	PHASIC 1 ADC Preamp 

	23
	2
	PHASIC 1 high gain threshold

	25
	2
	PHASIC 1 low gain threshold

	27
	2
	PHASIC 1 leakage current DAC setting

	29
	2
	Error Flags (16 bits)

	31
	2
	Software version ID (16 bits)

	23
	2
	N invalid token

	35
	2
	N invalid trigger

	37
	2
	N lost raw events 

	39
	2
	Major frame number

	41
	3
	Table checksum

	44
	1
	24-bit DAC value, bits 0:7 (PHASIC 0 DAC)

	45
	1
	24-bit DAC value, bits 8:15 (PHASIC 1 DAC)

	46
	1
	24-bit DAC value, bits 16:23 (un:4, mux:2, rng1:1, rng0:1)

	47
	5
	Available (TBD)

	52
	219
	Not available for use

	271
	1
	Checksum


8.9.  Raw Event Packet  (ApId: 597 (dec)  255 (hex))

This packet is a diagnostics packet and should not normally be generated in flight mode.  

The raw event packet is generated when the FSW has been configured to tmode 3 when connected to SEP Central, and tmode 1 when not connected to SEP Central.  This packet replaces the packets with ApId 592 and 593 in tmode 3, and is generated in addition to the other packets at every unused second in tmode 1.  This packet should generally be used when analysis requires reviewing the raw (24 bit) events before particle processing. 

	Offset
	Bytes
	597-packet contents

	0
	11
	CCSDS header

	11
	1
	HET mode byte

	12
	2
	TBD

	14
	2
	Major frame number

	16
	255
	85  24-bit raw events

	271
	1
	Checksum


8.10.  PH Event Selection

In large solar energetic-particle events, the number of particles collected by HET will exceed by far the space available for PH events in the PH packets.  Since most of these particles are protons, intelligent sampling is required to insure that other species are sampled.  As a part of the onboard processing and binning of each particle, sampled PH events for stopping and penetrating particles are queued as protons, helium, or heavy ions.  Approximately 1/3 of the telemetry space will be reserved for each species, but vacant space will be filled.  That is, if there are 3 C packets being sent per frame, one will be dedicated to each species.  However, if the “heavies” packet is not full, the space will be filled by any left over He.  Then, if the Heavy and He packets have space, it will be filled with H PH events.  A similar process will be used to fill the 18 slots in the D packet with penetrating-ion events (6 each).

If all stopping PH events fit in 3 C packets, all will be sent; if all fit in 1 or 2 C packets only, those will be sent, leaving room for extra D packets.  In quiet times, 1 D packet should contain all Galactic Cosmic Ray events, but additional D packets might be useful very early in a large SEP event, before many stopping ions arrive.  When all pulse-heights fit in a 1 C packet and 1 D packet, 2 E packets may be sent to fill the 6 packet/min frame.  This is the minimum quiet-time set of packets.  

Note that the queues for the 8 categories of sample PH events (see B.1) will have to be long enough to accommodate the maximum “backfill” of the packets.  For example the stopping proton queue must fill 3 C packets (max. 126 events) in case there are no stopping He & heavies; He must fill 2 C packets (max. 84 events), and heavies 1 (max 42 events).  Similarly, penetrating H events must fill as many as 3 D packets (54 events) and pen. He must fill 2 D packet (36 events) and heavies 1 (18 events).  Note that only those PHs to be actually transmitted need to be converted to compressed PH format.

Frame rates higher than one per minute may be required for accelerator calibrations.

8.11. Onboard Software Count Bins

8.11.1.  H1 Singles Events

H1 – only events are mapped to MeV and binned in 2-MeV intervals out just beyond the proton endpoint, and then 4-MeV intervals to beyond the He endpoint.  Intervals (18) are:

0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-20, 20-24, 24-28, 28-32, 32-36, 36-40, 40-44, 44-48, 48-52, >52.

8.11.2. A.2  Stopping Particles

Identified species and energy intervals are shown:

	MeV/n
	H&4He
	3He
	C
	O
	Ne
	Mg
	Si
	Fe

	13-15
	X
	
	
	
	
	
	
	

	15-
	X
	
	
	
	
	
	
	

	17-
	X
	17-21
	
	
	
	
	
	

	19-
	X
	
	
	
	
	
	
	

	21-
	X
	21-27
	
	
	
	
	
	

	24-
	X
	
	
	
	
	
	
	

	27-
	X
	27-33
	x
	
	
	
	
	

	30-
	X
	
	x
	x
	
	
	
	

	33-
	X
	33-40
	x
	x
	x
	
	
	

	36-
	X
	
	x
	x
	x
	
	
	

	40-
	
	40-47
	x
	x
	x
	x
	x
	

	45-
	
	
	x
	x
	x
	x
	x
	

	52-
	
	
	x
	x
	x
	x
	x
	x

	62-
	
	
	x
	x
	x
	x
	x
	x

	74-
	
	
	
	x
	x
	x
	x
	x

	87-
	
	
	
	
	x
	x
	x
	x

	98-
	
	
	
	
	
	x
	x
	x

	109-
	
	
	
	
	
	
	x
	x

	119-
	
	
	
	
	
	
	
	x

	140-163
	
	
	
	
	
	
	
	x

	Bin-Count
	20
	5
	8
	8
	8
	7
	8
	8


Total 72 bins for stopping ions, plus 3 background bins.

Electrons are accumulated in 3 bins:  0.7-1.4, 1.4-2.8, and 2.8-4.0 MeV

8.11.3. A.3  Penetrating Particles

Bins for penetrating particles are as follows:

	MeV/nucleon
	H
	He

	40-60
	x
	x

	60-100
	x
	x

	100-200
	x
	x

	200-400
	x
	

	>400
	x
	

	Bin-count
	5
	3


There are a total of 8 bins for penetrating particles, plus 2 background bins.

8.12. Pulse-Height Selection and Formatting

8.12.1.  Pulse-Height Categories

In the process of the onboard identification and binning of particle pulse-height (PH) events, sample events are selected and formatted for telemetry.   To prevent PH events of a given type (e.g. protons) from dominating the telemetry stream, events are grouped in the following categories:

0 - H1 singles

1 - Stopping protons

2 - Stopping He

3 - Stopping heavies

4 - Penetrating protons

5 - Penetrating He

6 - Penetrating heavies

7 - PH stimulator events

Singles events consist of a single PH in the H1 (H1i or H1i) detector.  Stopping events consist of PHs from 2 to 5 detectors, H1, H2, (…H5).  Penetrating events consist of 6 detectors H1 through H6.  PH stimulator events consist of up to 7 PHs: H1i, H1o, H2, …H6.  All events are presumed to be valid events, in that the PHs are ordered consistently, since invalid events (e.g. H1H2H5) have been weeded out early during PH interrupt service.  Each event has been tallied in an onboard particle species and energy “software” bin, although that bin may be a “background” bin between actual particle tracks.  

Each event category is allocated a fixed basic amount of space in the output data packets.  This insures adequate representation of the categories in a large solar particle event.  However, if there are not enough events in a given category to fill the allotted space at the end of each one-minute “frame,” events from another category are allowed to occupy that space, in a priority order, until all available PH telemetry space in the packets is filled or all events are telemetered.  This means that more PH events in each category should be queued than can fit in the basic allocation for that category.  Basic allocations and filling priorities are presently TBD.

8.12.2.   PH Event Format

With the exception of the H1 singles events, discussed below, all PH events consist of a 16-bit header followed by the appropriate number of 16-bit packed pulse heights.  The bit pattern of the 16-bit header is as follows (listed in lsb to msb order):

3-bits   Count of PHs in this event

8-bits   Onboard SW bin this event was assigned to

1-bit    Stimulator event flag

1-bit    Current rate mode of the HET

3-bits  PH category

Each individual PH is compressed from the 24-bit value read from the ASIC to a 16-bit value with the following bit pattern (lsb to msb)

11-bits  PH value

1-bit    Overflow bit

1-bit    High/low gain

3-bit     PH number  (H1i, H1o, H2, …H6)

To save space, H1 singles are treated differently from other events in that they have no header but consist only of a single 16-bit PH event as defined above.  Because of this, they occupy a fixed space in the telemetry packets that cannot be shared with events in other PH categories.  

Note that stopping and penetrating events can be mixed arbitrarily.  Using the PH-counts in the PH-header it is possible to traverse logically from event to event throughout a list of events.

In the process of storing PH events in a 272-byte packet buffer, one may arrive at a place where an event is too large to fit in the remaining space.  In this case, the remaining space in the packet is zeroed and the event is stored elsewhere or omitted.  This will result in a PH-count of 0 when an attempt is made to read this event on the ground. 

9. SIT Telemetry Packet Format Descriptions

Referenced document:  Design Considerations for the STEREO/IMPACT/SIT 
Suprathermal-Ion_Telescope (SIT),  Version 2.3, August 23, 2004 by G. M. Mason, A. Korth, P. H. Walpole, M. I. Desai, J. R. Dwyer, and T. T. von Rosenvinge
All rates in the SIT packets are log compressed from 24-bit to 16-bit quantities for telemetry according to the algorithm given in section 10.
9.1. SIT APID Assignments
	APID
	Description

	605  (Hex 25D)
	RATE

	606  (Hex 25E)
	PHA packet #1

	607  (Hex 25F)
	PHA packet #2

	608  (Hex 260)
	PHA packet #3

	609  (Hex 261)
	PHA packet #4

	610  (Hex 262)
	PHA packet #5

	611  (Hex 263)
	PHA packet #6

	612  (Hex 264)
	PHA packet #7

	613  (Hex 265)
	PHA packet #8

	614  (Hex 266)
	PHA packet #9

	615  (Hex 267)
	PHA packet #10

	616  (Hex 268)
	PHA packet #11

	617  (Hex 269)
	Test mode=2  (raw events)

	618  (Hex 26A)
	Housekeeping

	619  (Hex 26B)
	Beacon Rates

	623  (Hex 26F)
	Fill 


9.2. Rate Packet (ApID: 605)

The rate packet contains discriminator and matrix rates, and command status information. There is no multiplexing.

	Byte # 
	Description

	1-11 
	CCSDS

	12-13
	Discriminator Rate (=DR) 1-- START singles

	14-15
	DR2 – STOP singles

	16-17
	DR3 – Valid Stop

	18-19
	DR4 – SSD singles

	20-21
	DR5 – Event (triple coincidence)

	22-23
	DR6 – Dead time counter

	24-25
	DR7 – Artificial STOP count (TOF diagnostic)

	26-27
	DR8 – TOF system error count

	28-29
	Matrix Rate (=MR) MR1 

	30-31
	MR2

	32-33
	MR3

	34-35
	MR4

	36-37
	MR5

	38-259
	MR6 – MR116

	260
	hvstep

	261
	4 1-bit flags:

bit 0 (lsb): 0 = TOF error events transmitted

0 = TOF error events dropped

bit 1: 0 = HV disabled

1 = HV enabled

bit 2: 0 = VS required for analysis

1 = SSD only required for analysis

bit 3: 0 = ROM box 0 events dropped

1 = ROM box 0 events transmitted

	262-263
	LIMHI

	264-266
	3-byte lookup table checksum

	267-271
	spare

	272
	checksum


9.3      PHA  Packets (ApIDs: 605-616)
	Byte #
	Description

	1-11
	CCSDS Header

	12-15
	PHA event 1

	16-19
	PHA event 2

	20-23
	PHA event 3

	24-27
	PHA event 4

	28-267
	PHA event 5-64

	268-270
	spare

	271
	Number of PHA events in packet

	272
	checksum


9.4 PHA  Raw Event Packet (ApID: 617)
	Byte #
	Description

	1-11
	CCSDS Header

	12-15
	PHA event 1

	16-271
	PHA event 2 - 65

	272 
	checksum


9.5 Housekeeping Packet (ApId 618)

	Byte #
	Description

	1-11
	CCSDS Header

	12-13
	Major Frame #

	14-15
	TOF gain Cal * 2048

	16-17
	TOF Cal offset * -64

	18
	TOF Cal error

	19
	HV monitor

	20
	TOF temp

	21
	SSD temp

	22
	foil temp

	23
	+3.3 V monitor

	24
	+2.4 V monitor

	25
	+5.0 Digital V monitor

	26
	+6.0 V monitor

	27-28
	Software version

	29-31
	lookup table checksum

	32-271
	unused

	272
	checksum


9.6 Beacon Data Packet (ApId 619)

	Byte #
	Description

	1-11
	CCSDS Header

	12-13
	Beacon Rate 1 (compressed)

	14-34
	Beacon Rate 2 – 12 (compressed)

	35-271
	unused

	272
	checksum


10. Rate Compression Algorithm
/* 32-bit (or 24-bit) -> 16-bit compression for SW and HW rates  */

/* useage:  rateout=pack_rate(ratein);                           */

unsigned int pack_rate(ratein)

long ratein;

{

        unsigned int rateout, power=0;

        while (ratein&0xfffff000)

        {

                power+=0x0800;

                ratein>>=1;

        }

        rateout=ratein;

        if (power)

                rateout=power+0x0800|((rateout&0x07ff));

        return rateout;

}

/* Unpacking (not required in flight code) */

long long_rate(packed)  /* Unpack to long */

unsigned packed;

{

        int power;

        long out;

        power= packed>>11;

        if (power>1)

        {

                out=((packed&0x07ff)|0x0800);

                out=out<<(power-1);

        }

        else

                out=packed;

        return out;

}

double dbl_rate(packed) /* Unpack to double */

unsigned packed;

{

        int power;

        double out;

        power= packed>>11;

        if (power>1)

        {

                out=((packed&0x07ff)|0x0800);

                out=out*pow(2.,(double)(power-1));

        }

        else

                out=packed;

        return out;

}
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